

PROJECTION OF HIV PREVALENCE AMONG **INDIVIDUALS AGED 15-49 YEARS IN GABON** USING HOLT'S LINEAR METHOD

ISSN (E): 2938-3765

Dr. Smartson. P. NYONI 1, Thabani NYONI 2

1ZICHIRe Project, University of Zimbabwe, Harare, Zimbabwe 2Independent Researcher & Health Economist, Harare, Zimbabwe

Abstract

This study uses annual time series data of HIV prevalence among individuals aged 15-49 years for Gabon from 1990 to 2020 to predict future trends of HIV prevalence over the period 2021 to 2030. The study utilizes Holt's linear exponential smoothing model. The optimal values of smoothing constants α and β are 0.9 and 0.1 respectively based on minimum MSE. The results of the study indicate that annual HIV prevalence among individuals aged 15-49 years will continue to decline over the out of sample period. Therefore, it is essential to address main factors that contribute to HIV spread among high-risk groups such as adolescents, MSM, sex workers and transgender women. Focus should be directed to HIV prevention strategies and HIV case detection among key populations.

Keyword (s): - Exponential smoothing, Forecasting, HIV prevalence.

Introduction

According to the World Health Organization (WHO) approximately 39 million people were HIVinfected and 650,000 died from AIDS-related illnesses worldwide by the end of 2022. The fatalities were largely due to OIs (UNAIDS, 2023). Antiretroviral therapy (ART) has improved the living conditions of people living with HIV/AIDS (PLWHA) and has led to a significant reduction in morbidity and mortality (Woldegeorgis et al. 2023; Mirani et al. 2015; Palella et al. 2006). Previous studies demonstrated that factors such as late initiation, discontinuation, nonadherence, low CD4 T lymphocyte count, inadequate virological monitoring, gender, age, place of residence, and functional or disclosure or nutritional status are associated with the emergence of opportunistic infections (OIs) among adults (PLWHA) post-ART (Dagnaw et al. 2022; Arefaine et al. 2020; Solomon et al. 2018; Zhou et al. 2007). The prevalence of HIV-1 infection was reported to be 4.1% of the general population aged 15 to 49 years old in Gabon (EDSG, 2012). The national HIV response encompasses demand creation using various platforms, HIV testing in the community, ART services at static and outreach points and support services. The purpose of this paper is to model and forecast HIV prevalence among individuals aged 15-49 years for Gabon using Holt's linear method. Study findings are expected to inform allocation of scarce resources towards targeted HIV programs across the country.

Literature Review

Author(s)	Objective (s)	Methodology	Main Finding (s)
Nzengui-Nzengui et al.	To determine the profiles	Plasma from 84 PLHIV receiving	The study revealed that
(2024)	of HIV drug resistance	ARVs was collected from 2019 to	HIV drug resistance
	mutations related to	2021, followed by RNA extraction,	mutations are common in
	protease inhibitors in	amplification, and sequencing of the	Gabon. The major
	Gabon.	protease gene. ARV resistance	mutations associated with
		profiles were generated using the	PIs were M41L, I84V, and
		Stanford interpretation algorithm	V82A.
		version 8.9-1	
		(https://hivdb.stanford.edu) and	
		statistical analyses were performed	
		using EpiInfo software version 7.2.1.0 (CDC, USA).	
Davi et al. (2023)	To estimate the prevalence	Between 2018 and 2019, data for the	There was a trend
Buvi et ul. (2023)	of HIV in Gabon and	HIV-prevalence survey were	indicating that
	compare the prevalence of	collected retrospectively in 21	HIV-negative women were
	various co-infections	Gabonese antenatal care centres	more often co-infected
	between HIV-positive and	(ANCs). Subsequently, for the	with sexually transmitted
	HIV-negative pregnant	prospective co-infection study, all	infections (STIs) than
	women.	HIV-positive pregnant women were	HIV-positive women
		recruited who frequented the ANC	[mean (standard deviation,
		in Lambaréné and a comparator	SD): 2.59 (1.04) vs 2.16
		sub-sample of HIV-negative	(1.35), respectively; P =
		pregnant women was recruited;	0.056]; this was not the
		these activities were performed from	case for vector-borne
		February 2019 to February 2020	infections [mean (SD):
			0.47 (0.72) vs 0.43 (0.63),
Mouinga-Ondeme et al.	To identify the risk factors	Epidemiological and biological data	respectively; P = 0.59]. The study revealed a high
(2023)	that contributed to the	were obtained from medical records	overall prevalence of OIs
(2023)	onset of OIs in HIV	(2017 to 2019) found at the	overall prevalence of oils
	patients undergoing ART	outpatient treatment centre (CTA) of	
	in Gabon	Franceville in Gabon. Samples for	
		blood count, CD4, and viral load	
		analysis at CIRMF were collected	
		from PLWHA suffering from other	
		pathogen-induced conditions.	
Bongenya et al. (2023)	To determine the reasons	descriptive survey	Nearly half of the patients
	behind the loss of patients		no longer return to the
	on Antiretroviral Treatment (ART) after 6		treatment centers where
	months of follow-up.		they started
Bekolo et al. (2023)	to review current evidence	conducted a secondary analysis	The observed decline in
201010 01 41. (2023)	for declining HIV	using HIV prevalence, behavioral	HIV prevalence is
	prevalence despite	and social determinants data of the	statistically valid and
	increasing survival owing	Demographic and Health Survey	reflects the observed
	to 'universal test and treat'	Program databases	decline in risky sexual
	and to explore the reason		behavior that need to be
	for the decrease,		sustained by the National
	particularly the role of		HIV programme
	behavioral change.		

ISSN (E): 2938-3765

Methodology

This study utilizes an exponential smoothing technique to model and forecast future trends of annual HIV prevalence among individuals aged 15-49 years in Gabon. In exponential smoothing forecasts are generated from the smoothed original series with the most recent historical values having more influence than those in the more distant past as more recent values are allocated more weights than those in the distant past. This study uses the Holt's linear method (Double exponential smoothing) because it is an appropriate technique for modeling linear data.

ISSN (E): 2938-3765

Holt's linear method is specified as follows:

Model equation

$$G_t = \mu_t + \rho_t \mathbf{t} + \varepsilon_t$$
....[1]

Smoothing equation

$$S_{t} = \alpha G_{t} + (1-\alpha)(S_{t-1} + b_{t-1})...$$
[2]

0<∝<1

Trend estimation equation

$$b_{t} = \beta (S_{t} - S_{t-1}) + (1 - \beta)b_{t-1}...$$
[3]

 $0 < \beta < 1$

Forecasting equation

$$f_{t+h} = S_t + hb_t....$$
[4]

 G_t is the actual value of HIV prevalence at time t

 ε_t is the time varying **error term**

 μ_t is the time varying mean (**level**) term

 ρ_t is the time varying **slope term**

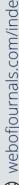
t is the trend component of the time series

 S_t is the exponentially smoothed value of HIV prevalence at time t

 α is the exponential smoothing constant for the data

 β is the smoothing constant for trend

 f_{t+h} is the h step ahead forecast


 b_t is the trend estimate (slope of the trend) at time t

 b_{t-1} is the trend estimate at time t-1

Data Issues

This study is based on annual HIV prevalence among individuals aged 15-49 years in Gabon for the period 1990-2020. The out-of-sample forecast covers the period 2021-2030. All the data employed in this research paper was gathered from the World Bank online database.

Findings of the study

Exponential smoothing Model Summary

Table 1: ES model summary

Variable	G
Included Observations	31
Smoothing constants	
Alpha (α) for data	0.900
Beta (β) for trend	0.100
Forecast performance measures	
Mean Absolute Error (MAE)	0.336121
Sum Square Error (SSE)	10.534579
Mean Square Error (MSE)	0.339825
Mean Percentage Error (MPE)	-4.839083
Mean Absolute Percentage Error (MAPE)	15.215961

ISSN (E): 2938-3765

Residual Analysis for the Applied Model

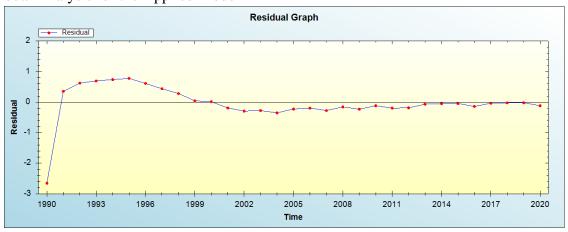


Figure 1: Residual analysis

In-sample Forecast for G

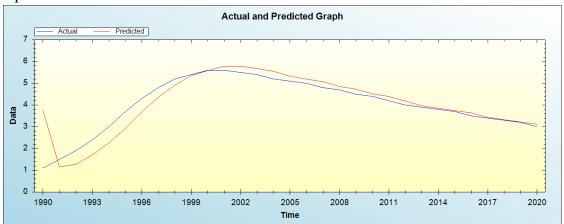
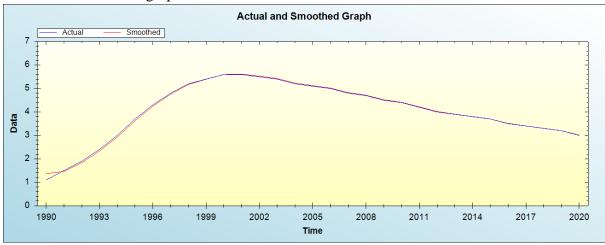


Figure 2: In-sample forecast for the G series



4 | Page

Actual and Smoothed graph for G series

ISSN (E): 2938-3765

Figure 3: Actual and smoothed graph for G series

Out-of-Sample Forecast for G: Actual and Forecasted Graph

Figure 4: Out-of-sample forecast for G: actual and forecasted graph

Out-of-Sample Forecast for G: Forecasts only

Table 2: Tabulated out-of-sample forecasts

Year	Forecasted HIV prevalence
2021	2.9165
2022	2.8212
2023	2.7260
2024	2.6307
2025	2.5355
2026	2.4402
2027	2.3449
2028	2.2497
2029	2.1544
2030	2.0592

The main results of the study are shown in table 1. It is clear that the model is stable as confirmed by evaluation criterion as well as the residual plot of the model shown in figure 1. It is projected that annual HIV prevalence among individuals aged 15-49 years will continue to decline over the out of sample period.

ISSN (E): 2938-3765

Policy Implication and Conclusion

This study established that the annual HIV prevalence among individuals aged 15-49 years will continue to decline over the out of sample period. Therefore, policy-makers are encouraged to address main factors that contribute to HIV spread among high risk groups such as adolescents, MSM, sex workers and transgender people. Focus should be given to HIV prevention strategies and HIV case detection among key populations.

References

- 1. UNAIDS Sheet Fact (2023). Global HIV statistics people living with HIV people living with HIV accessing antiretroviral therapy New HIV infections AIDS- related deaths Key Populations. https://www.unaids.org/en/resources/ fact-sheet
- 2. WHO (2019). Update of Recommendations on First- and Second-Line Antiretroviral Regimens; WHO: Geneva, Switzerland.
- 3. EDSG (2012). Prévalence de L'infection à VIH au Gabon. 2012. Available online: https://gabon.unfpa.org/sites/default/files/pub-pdf/ EDS%20II.pdf
- 4. Woldegeorgis, B.Z.; Kerbo, A.A.; Obsa, M.S.; and Mokonnon, T.M (2023). A systematic review and meta-analysis of antimicrobial resistance knowledge, attitudes, and practices: Current evidence to build a strong national antimicrobial drug resistance narrative in Ethiopia. PLoS ONE. 18, e0287042.
- 5. Palella, F.J., Jr.; Baker, R.K.; Moorman, A.C.; Chmiel, J.S.; Wood, K.C.; Brooks, J.T.; and Holmberg, S.D (2006). Mortality in the highly active antiretroviral therapy era: Changing causes of death and disease in the HIV outpatient study. J. Acquir. Immune Defic. Syndr. 2006, 43, 27–34.
- 6. Mirani, G.; Williams, P.L.; Chernoff, M.; Abzug, M.J.; Levin, M.J.; Seage, G.R., 3rd; Oleske, J.M.; Purswani, M.U.; Hazra, R.; and Traite, S (2015). Changing Trends in Complications and Mortality Rates Among US Youth and Young Adults with HIV Infection in the Era of Combination Antiretroviral Therapy. Clin. Infect. Dis. 2015, 61, 1850–1861.
- 7. Arefaine, Z.G.; Abebe, S.; Bekele, E.; Adem, A.; Adama, Y.; Brockmeyer, N.H.; Coenenberg, J.; Potthoff, A.; and Gebremeskel, T.G (2020). Incidence and predictors of HIV related opportunistic infections after initiation of highly active antiretroviral therapy at Ayder Referral Hospital, Mekelle, Ethiopia: A retrospective single centered cohort study. PLoS ONE 2020, 15, e0229757.
- 8. Solomon, F.B.; Angore, B.N.; Koyra, H.C.; Tufa, E.G.; Berheto, T.M.; and Admasu, M (2018). Spectrum of opportunistic infections and associated factors among people living with HIV/AIDS in the era of highly active anti-retroviral treatment in Dawro Zone hospital: A retrospective study. BMC Res. Notes 2018, 11, 604.

Dagnaw Tegegne, K.; Cherie, N.; Tadesse, F.; Tilahun, L.; Kassaw, M.W.; and Biset, G (2022). Incidence and Predictors of Opportunistic Infections among Adult HIV Infected Patients on Anti-Retroviral Therapy at Dessie Comprehensive Specialized Hospital, Ethiopia: A Retrospective Follow-Up Study. HIV AIDS 2022, 14, 195–206.

ISSN (E): 2938-3765

10. Zhou, J.; Paton, N.I.; and Ditangco, R (2007). AIDS-defining illness diagnosed within 90 days after starting highly active antiretroviral therapy among patients from the TREAT Asia HIV Observational Database. Int. J. STD AIDS 2007, 18, 446-452.

