

ISSN (E): 2938-3765

FORECASTING HIV PREVALENCE AMONG INDIVIDUALS AGED 15-49 YEARS IN GUYANA USING HOLT'S LINEAR METHOD

Dr. Smartson. P. NYONI 1, Thabani NYONI 2 1ZICHIRe Project, University of Zimbabwe, Harare, Zimbabwe 2Independent Researcher & Health Economist, Harare, Zimbabwe

Abstract

This study uses annual time series data of HIV prevalence among individuals aged 15-49 years for Guyana from 1990 to 2020 to predict future trends of HIV prevalence over the period 2021 to 2030. The study utilizes Holt's linear exponential smoothing model. The optimal values of smoothing constants α and β are 0.9 and 0.5 respectively based on minimum MSE. The results of the study indicate that annual HIV prevalence among individuals aged 15-49 years will decline over the out of sample period. Therefore, there is need to strengthen HIV case detection and HIV prevention among key populations and vulnerable groups.

Keywords: - Exponential smoothing, Forecasting, HIV prevalence.

Introduction

HIV remains an important health problem worldwide. Guyana has a mixed HIV epidemic that disproportionately affects key populations (KPs) and vulnerable groups. According to UNAIDS data, HIV serorevalence has remained constant at around 1.4%. As revealed by the 2021-Integrated Behavioral and Biological Survey (IBBS), HIV prevalence is 2.2% among FSWs, 1.8% among MSM, and 11.8% among transgender individuals in Guyana. According to EPIC Guyana, Region 4, Demerara-Mahaica, is the most densely populated of the 10 administrative regions and the area most affected by HIV, accounting for 75.4% of all new HIV infections. Experiences of genderbased violence (GBV) among KP community members remains a problem in Guyana. A 2014 survey revealed that one-quarter to one-third of sex workers had experienced rape (25.2% male, 25.1% female, and 31.1% transgender individuals) (Guyana, 2014). Although acceptance of KP members has improved, much still needs to be done on stigma and discrimination. GTU has led the way in raising awareness and sensitizing various communities and organizations on gender related issues by collaborating with NAPS to conduct training sessions on GBV and sexual orientation, gender identity, and equality. The purpose of this research is to model and forecast HIV prevalence among individuals aged 15-49 years for Guyana using Holt's linear method. The results of this study are expected to facilitate planning and allocation of resources towards targeted HIV prevention, treatment, care and support programs in the country in order to effectively control the HIV epidemic especially among key populations and vulnerable groups.

5	

Literature Review					
Author(s)	Objective (s)	Methodology	Key finding(s)		
Joseph et al.	To examine the factors	Data from the last three	HIV testing prevalence increased		
(2024)	associated with HIV	Haitian Demographic and	more than twofold from 2006		
	testing among women	Health Surveys (2006, 2012,	(8.8%) to 2017 (21.3%); however,		
	in Haiti and trends in	and 2016/17) were used	it decreased by 11.6% between		
	HIV testing in 2006,	-multilevel regression model	2012 and 2016/17		
	2012, and 2016/17	to describe the trends and			
		identify factors associated			
		with HIV testing in Haiti.			
		P-value less than 0.05 was			
		taken as a significant			
		association.			
Huff et al.	To explore the interplay	scoping review	Factors associated with HIV among		
(2022)	between substance use		PWUS included being female, IDU		
	(SU) and HIV in Latin		and homelessness, and PWUS were		
	America (LA).		likely to engage in risky sexual		
			behaviors, start antiretroviral		
			treatment late, have poor		
			adherence, have treatment failure,		
			be lost to follow-up, have		
			comorbidities, as has been		
			regions		
Doroálus et el	To access these feature	anoga agotional study was	Nearly 78% had reasized ADT for		
(2021)	as potential harriars to	conducted among PI H	loss than 10 years 3 41% reported		
(2021)	as potential barriers to	receiving entiretroviral	having poor adherance and 28%		
	natients receiving care	therapy (ART) at the	less than excellent adherence		
	in central Haiti	TB/HIV clinic at St Therese	Factors related to poor adherence in		
		Hospital in Hinche, Ha	hivariate analysis were age less		
		Trospital III Timone, The	than 40 years (OR: 6.32, 95% CI		
			2.04-10.58, p < 0.01) and inability		
			to meet basic needs (OR: 2.70, 95%)		
			CI 1.04–7.0, p = 0.03).		
Local Burden of	To address this gap and	-Ecological study using VR	There was a significant spatial		
Disease HIV	provide novel estimates	data ranging from 2000 to	variation and diverging local trends		
Collaborators	of the HIV mortality	2017, dependent on	in HIV mortality over time and by		
(2021)	rate and the number of	individual country data	age.		
	HIV deaths by age	availability.			
	group, sex, and	-modeled HIV mortality			
	municipality in Brazil,	using a Bayesian spatially			
	Colombia, Costa Rica,	explicit mixed-effects			
	Ecuador, Guatemala,	regression model that			
	and Mexico	incorporates prior			
		information on VR			
		completeness.			
Palmer et al.	To estimate HIV	Cross-sectional study	The prevalence of HIV infection		
(2002)	Prevalence in a Gold		among men in a gold mining camp		
	Mining Camp in the		in the Amazon region of Guyana		
	Amazon Region,		was 0.5%		
	Guyana	1			

ISSN (E): 2938-3765

Web of Medicine: Journal of Medicine, Practice and Nursing Mebofjournals.com/index.php/5 64 | Page

ISSN (E): 2938-3765

Methodology

This study utilizes an exponential smoothing technique to model and forecast future trends of HIV prevalence among individuals aged 15-49 years in Guyana. In exponential smoothing forecasts are generated from the smoothed original series with the most recent historical values having more influence than those in the more distant past as more recent values are allocated more weights than those in the distant past. This study uses the Holt's linear method (Double exponential smoothing) because it is an appropriate technique for modeling linear data.

Holt's linear method is specified as follows:

Model equation $A_t = \mu_t + \rho_t \mathbf{t} + \varepsilon_t$ Smoothing equation $S_t = \alpha A_t + (1 - \alpha) (S_{t-1} + b_{t-1})$ 0<¤<1 Trend estimation equation $b_t = \beta (S_t - S_{t-1}) + (1 - \beta) b_{t-1}$ $0 < \beta < 1$ Forecasting equation $f_{t+h} = S_t + hb_t$ A_t is the actual value of HIV prevalence at time t ε_t is the time varying error term μ_t is the time varying mean (level) term ρ_t is the time varying slope term t is the trend component of the time series S_t is the exponentially smoothed value of HIV prevalence at time t α is the exponential smoothing constant for the data β is the smoothing constant for trend f_{t+h} is the h step ahead forecast b_t is the trend estimate (slope of the trend) at time t b_{t-1} is the trend estimate at time t-1

Data Issues

This study is based on annual HIV prevalence among individuals aged 15-49 years in Guyana for the period 1990 - 2020. The out-of-sample forecast covers the period 2021 - 2030. All the data employed in this research paper was gathered from the World Bank online database.

Findings of the study

Exponential smoothing Model Summary

Table 1: ES model summary

Variable	А
Included Observations	31
Smoothing constants	
Alpha (α) for data	0.900
Beta (β) for trend	0.500

webofiournals.com/index.php/5

ISSN (E): 2938-3765

Forecast performance measures	
Mean Absolute Error (MAE)	0.035576
Sum Square Error (SSE)	0.082230
Mean Square Error (MSE)	0.002653
Mean Percentage Error (MPE)	-2.230410
Mean Absolute Percentage Error (MAPE)	12.722550

Residual Analysis for the Applied Model

Figure 1: Residual analysis

In-sample Forecast for A

Figure 2: In-sample forecast for the A series

66 | Page

Volume 2, Issue 7, July 2024 ISSN (E): 2938-3765 Actual and Smoothed graph for A series Actual and Smoothed Graph Smoothed Actual 1.6 1.4 1.2 1.0 Data 0.8 0.6 0.4 0.2 0.0 1993 1996 1999 2002 2005 2008 2011 2014 2017 2020 1990 Time

Figure 3: Actual and smoothed graph for A series

Out-of-Sample Forecast for A: Actual and Forecasted Graph

Figure 4: Out-of-sample forecast for A: actual and forecasted graph

Out-of-Sample Forecast for A: Forecasts only

Table 2:	Tabulated	out-of-sample	e forecasts
----------	-----------	---------------	-------------

Year	Forecasted HIV prevalence
2021	1.2650
2022	1.2200
2023	1.1750
2024	1.1300
2025	1.0850
2026	1.0400
2027	0.9950
2028	0.9501
2029	0.9051
2030	0.8601

67 | Page

ISSN (E): 2938-3765

The main results of the study are shown in table 1. It is clear that the model is stable as confirmed by evaluation criterion as well as the residual plot of the model shown in figure 1. It is projected that annual HIV prevalence among individuals aged 15-49 years will decline over the out of sample period.

Policy implication and conclusion

Our research findings indicate that that annual HIV prevalence among individuals aged 15-49 years will decline over the out of sample period. Therefore, authorities should strengthen HIV case detection and HIV prevention among high risk groups.

References

- 1. Joint United Nations Programme on HIV/AIDS (UNAIDS). Country: Guyana [Internet]. Geneva: UNAIDS; 2020 [cited 2020 Aug 18]. Available from: https://www.unaids.org/en/regions countries/countries/guyana.
- 2. Government of Guyana and MEASURE Evaluation. Biological and Behavioral Surveillance Survey. Georgetown: Government of Guyana; 2014.
- 3. EPIC GUYANA, Summary of Achievements May 2021–August 2022, pp. 1-8.

