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Abstract  

Studying the structure of a limit set is crucial for characterizing the long-term behavior and 

stability of a dynamical system. It is known that a bounded limit set is a continuum i.e. 

connected and compact, whereas unbounded ones may have enough complicated structure [1-

11]. For instance, the limit set of  -system may consist of uncountable connectivity components. 

It can be shown that  -limit set of quadratic systems is always connected. There is a cubic 

system on the plane which possesses the  -limit set consisting of two straight lines. The limit 

set of a polynomial system on the plane may have   connectivity components for arbitrary large   

[2]. In this paper we consider a problem how to construct a rational dynamical system with the  

-limit set consisting   connectivity components. 
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Introduction 

To construct desired system firstly, we take following rational function 
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where R  and k  are positive parameters. The level line 
0( , ) 0f x y =  consists of six brunches 

1 2 3 4 5 6, , , , , ,G G G G G G  which divide 
2

 into seven connectivity components (see Figure 1). 
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Figure 1. The level line 
0( , ) 0f x y = . 

Note that the value of parameter R  is equal to the distance from angle of branches to the origin, 

2k − the distance between parallel asymptotes of brunches. 

Let n  be an arbitrary natural number. Put 
6

k Rtg
n


=  and define the function 
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for 1,2,... 1.m n= −  Further, we consider the rational function 

0 1 1( , ) ( , ) ( , ) ... ( , )nF x y f x y f x y f x y−=     

(the degree of numerator is equal to 12n
, the degree of denominator to 14n

). The level line 

( ), 0F x y =
 
consists of level line 1 2 3 4 5 6, , , , ,G G G G G G  and as well as lines obtained by 

rotating 1 2 3 4 5 6, , , , ,G G G G G G
 
consequently through the angles 

2
,k

n


 1,2,..., 1.k n= −  

Thus the line ( , ) 0F x y =  consists of 6n  brunches. 

Secondly, we construct the Hamiltonian system for which ( , )F x y  serves the energy function: 
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The function ( , )F x y  reaches its maximum, equal to 1, only at the point (0,0).  Moreover,
 

0( , )F x y →  as 
2 2x y+ → . Thus the level lines ( , )F x y c=  for 0 1c   are closed 

curves and they fulfills the region 0 ( , ) 1F x y  . 

Finally, we modify the system (1) perturbing in the direction of the vector ( ),x yF F  such that 

the line ( , ) 0F x y =  stays an integral: 
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where   is an enough small positive number. 

 

Theorem. The  -limit set of trajectories of the system (2), lying in the region ( , ) 0F x y  , 

consists of the line ( , ) 0F x y =  and therefore, has 6n  connectivity components (see Figure 

2). 

 

Figure 2. The level line ( , ) 0F x y =  and one of the trajectories when 2n = . 
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