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Abstract

Studying the structure of a limit set is crucial for characterizing the long-term behavior and
stability of a dynamical system. It is known that a bounded limit set is a continuum i.e.
connected and compact, whereas unbounded ones may have enough complicated structure [1-
11]. For instance, the limit set of -system may consist of uncountable connectivity components.
It can be shown that -limit set of quadratic systems is always connected. There is a cubic
system on the plane which possesses the -limit set consisting of two straight lines. The limit
set of a polynomial system on the plane may have connectivity components for arbitrary large
[2]. In this paper we consider a problem how to construct a rational dynamical system with the
-limit set consisting connectivity components.

Keywords: dynamical system, rational system, vector field, limit set, Hamiltonian system,
Hamiltonian function, connectivity components, unboundedness.

Introduction
To construct desired system firstly, we take following rational function

000, y) = (R + X2 (y* —k?))-

4

X + y® 1 R
where R and K are positive parameters. The level line f°(X,y) =0 consists of six brunches

G,,G,,G;,G,,Gs, Gy, which divide [ 2 into seven connectivity components (see Figure 1).
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Figure 1. The level line f°(x,y)=0.
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Note that the value of parameter R is equal to the distance from angle of branches to the origin,
2k — the distance between parallel asymptotes of brunches.

: T : :
Let N be an arbitrary natural number. Put k = Rtg on and define the function
n

fM(x,y)= f° xcos2M _ sinﬂ, xsin 2™ 4 cos@)
(x.y) ( 3n y 3n 3n y 3n

for m=1,2,...n—1. Further, we consider the rational function

FOOY) = F200y) - F106 ) - £7H (X Y)
(the degree of numerator is equal to 12", the degree of denominator to 14"). The level line
F(x,y)=0 consists of level line G,,G,,G;,G,,Gs,Gg and as well as lines obtained by

2
rotating G,,G,,G;,G,,Gs, G, consequently through the angles Tk, k=12,.,n-1.
n

Thus the line F (X, y) =0 consists of 6n brunches.
Secondly, we construct the Hamiltonian system for which F (X,Y) serves the energy function:
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x=L y-- L (1)
oy’ OX
where
nd f! -1 fl(x,
F 0P _pROy) R ()

“ox inflxy) Y oy imfl(xy)
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The function F(X,Y) reaches its maximum, equal to 1, only at the point (0,0). Moreover,
F(x,y) >0 as x>+ y*> —o0. Thus the level lines F(X,y) =c for 0<c <1 are closed
curves and they fulfills the region 0 < F(X,y) <1.

Finally, we modify the system (1) perturbing in the direction of the vector (F, F,) such that
the line F(X,y) =0 stays an integral:
X=F,(xy)+AF(X.y)F(x.y)
y=-F(xy)+AF(X,y)F,(x,y)’

where A is an enough small positive number.

)

Theorem. The @-limit set of trajectories of the system (2), lying in the region F(X,y) >0,
consists of the line F(X,Yy) =0 and therefore, has 6n connectivity components (see Figure
2).

\'%

Figure 2. The level line F(X,Yy) =0 and one of the trajectories when n=2.
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