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Abstract 

This article investigates the spectral properties of the Friedrichs model with an excitation rank 

equal to three. The model is analyzed within the framework of functional analysis and operator 

theory. The focus is on the structure of the spectrum, including the absolutely continuous 

spectrum, point spectrum, and possible singular continuous spectrum. Special attention is given 

to the role of the excitation rank in shaping the spectral behavior and the interaction between 

discrete and continuous spectral components. Analytical techniques are employed to derive 

explicit conditions for the appearance of eigenvalues embedded in the continuous spectrum. 
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Introduction 

The study of spectral properties of self-adjoint operators lies at the heart of mathematical 

physics, particularly in quantum mechanics, where it provides insights into the energy 

distribution and dynamical behavior of quantum systems. One of the fundamental and 

extensively studied models in this domain is the Friedrichs model, originally introduced by 

Kurt Friedrichs in the mid-20th century to explore the interaction between discrete and 

continuous spectra in a Hilbert space framework. This model has served as a prototypical 

example for understanding resonance phenomena, spectral embedding, and perturbation effects 

on the spectral structure. 

In recent decades, researchers have extended the classical Friedrichs model to account for more 

complex physical systems by introducing additional parameters such as excitation rank, 

coupling intensity, and interaction kernels. The excitation rank, in particular, characterizes the 

number of discrete levels that can interact with the continuous spectrum and plays a crucial 

role in determining the spectral configuration. While the case of excitation rank one has been 

thoroughly examined, higher-rank models, especially those with excitation rank equal to three, 

remain less explored yet rich in mathematical and physical complexity. 

This paper aims to analyze the spectral properties of the Friedrichs model with excitation rank 

equal to three. We focus on the behavior of the absolutely continuous spectrum, the conditions 

for the emergence of embedded eigenvalues, and the interaction between the discrete and 

continuous components. By employing operator-theoretic techniques and functional analysis 



 

Volume 3, Issue 7, July - 2025                                                      ISSN (E): 2938-3811 

 

24 | P a g e  

  

 

 

tools, we derive structural properties of the associated Hamiltonian and examine how the 

excitation rank influences the spectral composition. 

 

Main Part 

The results obtained contribute to a deeper understanding of multi-level interaction systems 

and provide a theoretical basis for further applications in quantum scattering theory, resonance 

analysis, and numerical simulations of complex quantum models. 

The Friedrichs model is one of the most fundamental and classical constructs in spectral theory 

and quantum mechanics. It was introduced by Kurt Friedrichs as a simplified framework to 

study how discrete spectra can become embedded in or interact with the continuous spectrum 

under the influence of perturbations. The model is constructed in a Hilbert space setting and is 

used to analyze how an initially isolated eigenvalue, representing a bound state, can dissolve 

into the continuum as a result of interaction. Over time, the Friedrichs model has proven to be 

a fertile ground for developing intuition and formal results about resonance phenomena, 

spectral embedding, and the essential spectrum of self-adjoint operators. As such, it continues 

to be a key reference point in both mathematical physics and operator theory. 

When one speaks about the excitation rank of a Friedrichs model, they refer to the number of 

discrete energy levels that are allowed to interact with the continuous spectrum. In classical 

formulations, this excitation rank is typically one, meaning there is a single discrete state 

interacting with a continuum. However, real physical systems are often more complex and 

involve multiple interacting states. Increasing the excitation rank from one to two or three 

allows for the modeling of systems with richer internal structure and more intricate spectral 

behavior. A Friedrichs model with an excitation rank equal to three represents a case where 

three discrete states are simultaneously interacting with a continuous spectrum. This extension 

introduces additional mathematical challenges and opens the door to new types of spectral 

phenomena that do not arise in the lower-rank cases. 

The spectral analysis of such a model begins with the formulation of the Hilbert space and the 

definition of the self-adjoint operator representing the total Hamiltonian. Typically, the 

unperturbed operator consists of a diagonal operator on a three-dimensional subspace 

representing the discrete states and a multiplication operator on the space of square-integrable 

functions representing the continuous spectrum. The interaction is then introduced via a 

bounded perturbation, often modeled as a rank-three operator that couples each discrete state 

to the continuum. The full Hamiltonian is then analyzed using tools from functional analysis 

and operator theory, including resolvent analysis, spectral projections, and perturbation 

techniques. 

One of the key goals in studying such a model is to understand the spectrum of the perturbed 

operator. The spectrum in this case can consist of three types: absolutely continuous spectrum, 

point spectrum, and singular continuous spectrum. The absolutely continuous spectrum is 

associated with scattering states and typically corresponds to the unperturbed continuum. The 

point spectrum, on the other hand, includes isolated eigenvalues that may arise due to the 

interaction and represent bound states. Of particular interest are eigenvalues embedded in the 
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continuous spectrum, which may appear due to the specific structure of the interaction and the 

alignment of the discrete energy levels. These embedded eigenvalues are unstable under 

generic perturbations and are often associated with resonance phenomena. 

To analyze the presence or absence of embedded eigenvalues, one typically constructs the 

resolvent of the perturbed operator and examines its analytic properties. This often leads to the 

study of a matrix-valued self-energy function, which encodes the effect of the continuum on 

the discrete states. The eigenvalue problem is then reduced to finding the zeros of a matrix 

function involving the unperturbed discrete energies and the self-energy matrix. The presence 

of multiple discrete levels increases the dimensionality of this matrix and leads to richer 

analytical structures, including the possibility of multiple or degenerate eigenvalues, spectral 

branching, and resonance overlap. 

Another important aspect of the spectral analysis is the behavior of the wave operators and the 

scattering matrix. These operators describe the long-term evolution of the system and are 

intimately related to the absolutely continuous spectrum. In the case of a rank-three excitation, 

the scattering process becomes more complex, as there are multiple pathways through which 

an incoming wave can interact with the discrete states and be re-emitted into the continuum. 

The structure of the scattering matrix in this setting can provide deep insights into the coupling 

mechanisms and resonance behavior. 

In addition to the theoretical interest, the Friedrichs model with excitation rank three also has 

practical implications in various areas of physics. For instance, in quantum optics, systems with 

multiple excited states coupled to a radiation field can be effectively modeled using higher-

rank Friedrichs models. Similarly, in solid-state physics, impurity models involving several 

localized states interacting with conduction bands are naturally described by such constructs. 

The simplicity of the Friedrichs framework allows for analytical treatment, while still capturing 

essential features of more complex systems. 

The mathematical tools required for analyzing such a model are diverse and include spectral 

measure theory, Fredholm determinant techniques, complex analysis for studying the analytic 

continuation of resolvents, and functional calculus for self-adjoint operators. In many cases, 

numerical simulations are employed to verify the theoretical predictions and to explore regimes 

that are analytically intractable. This dual approach of theoretical analysis and computational 

modeling helps build a comprehensive understanding of the spectral properties. 

Furthermore, the presence of multiple interacting states can lead to collective effects that are 

absent in the single-state model. For example, one may observe the splitting of energy levels 

due to level repulsion, interference effects between resonance channels, or the emergence of 

quasi-bound states with long lifetimes. These phenomena are not only of mathematical interest 

but also provide explanations for experimentally observed behaviors in fields such as nuclear 

physics, molecular spectroscopy, and quantum chemistry. 

In conclusion, the Friedrichs model with excitation rank equal to three serves as an important 

extension of the classical model, providing a framework to study more complex and realistic 

systems where multiple discrete states interact with a continuum. The spectral analysis of such 

a model reveals a rich structure that includes embedded eigenvalues, resonances, and intricate 
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scattering phenomena. The insights gained from this study not only deepen our understanding 

of spectral theory and operator analysis but also have significant implications for modeling and 

interpreting physical systems across various domains. The combination of analytical and 

numerical techniques makes this an active area of research with continuing relevance in both 

mathematics and physics.  

The Friedrichs model provides an essential framework for studying how discrete quantum 

states interact with a continuum. Originally introduced by Kurt Friedrichs, the model serves as 

a prototypical example in spectral theory, particularly in understanding resonance phenomena 

and embedded eigenvalues. In its classical form, the Friedrichs model considers a single 

discrete state interacting with a continuous spectrum. However, real-world systems, 

particularly in atomic, nuclear, and condensed matter physics, often involve multiple discrete 

states. Thus, extending the model to include multiple excitations—specifically three—gives a 

more realistic and complex picture of such systems. 

In the extended Friedrichs model with excitation rank equal to three, the Hilbert space is 

typically expressed as the direct sum of a three-dimensional complex vector space representing 

the discrete states and the Hilbert space L2(R)L^2(\mathbb{R})L2(R) representing the 

continuous part. The total Hamiltonian HHH can be written as the sum H=H0+VH = H_0 + 

VH=H0+V, where H0H_0H0 is the unperturbed Hamiltonian and VVV is the interaction term. 

The unperturbed Hamiltonian has a block-diagonal form: it acts as a multiplication operator on 

L2(R)L^2(\mathbb{R})L2(R), and as a diagonal matrix on the discrete sector, corresponding 

to three distinct energy levels. The interaction operator VVV introduces coupling between the 

discrete and continuous sectors and is typically of finite rank—in this case, rank three. 

The spectral analysis of the operator HHH aims to characterize its spectrum, which consists of 

the point spectrum (eigenvalues), the absolutely continuous spectrum, and possibly the singular 

continuous spectrum. In the Friedrichs model, it is known that the absolutely continuous 

spectrum of the perturbed operator remains stable and coincides with that of the unperturbed 

multiplication operator, usually covering the whole real line or a semi-infinite interval. The 

focus, therefore, lies in determining whether new eigenvalues emerge, particularly those 

embedded within the continuous spectrum, and how these are influenced by the rank and 

structure of the interaction. 

To this end, one constructs the resolvent R(z)=(H−zI)−1R(z) = (H - zI)^{-1}R(z)=(H−zI)−1, 

where z∈C∖σ(H)z \in \mathbb{C} \setminus \sigma(H)z∈C∖σ(H), and studies its analytic 

structure. For rank-three models, the resolvent may be expressed using the Feshbach projection 

method, which reduces the problem to a finite-dimensional matrix problem involving the self-

energy function. This function accounts for the back-action of the continuum on the discrete 

states and typically takes the form of a 3×33 \times 33×3 matrix-valued analytic function. The 

eigenvalues of HHH correspond to the poles of the resolvent, and hence to the zeros of the 

determinant of this matrix. 

The presence of multiple interacting discrete levels introduces new phenomena, such as level 

repulsion, interference between resonance channels, and the formation of complex resonance 

poles. In physical terms, each discrete level can be viewed as a resonance interacting with the 
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continuum. When three such resonances are present, their mutual interaction mediated through 

the continuum can lead to complicated spectral structures. For instance, eigenvalues may shift 

significantly from their unperturbed positions or even merge with the continuous spectrum, 

resulting in embedded eigenvalues. These are of particular interest, as they represent bound 

states that coexist with scattering states, and are often unstable under perturbations. 

An important mathematical result is that for generic interactions, embedded eigenvalues in the 

absolutely continuous spectrum are not stable—they typically turn into resonances with 

complex energies. However, in specially structured systems or under symmetry constraints, 

such eigenvalues can persist. The identification and characterization of these eigenvalues 

involve a detailed analysis of the spectral equation derived from the effective Hamiltonian, 

often through the use of analytic continuation and Riemann surface techniques. 

In addition to the spectral properties, scattering theory plays a central role in the analysis of the 

Friedrichs model. The existence and completeness of wave operators provide information 

about the long-time dynamics of the system. For the excitation rank-three case, the construction 

of the scattering matrix involves a 3×33 \times 33×3 transition matrix whose elements describe 

the probability amplitudes of transitions between different discrete levels mediated by the 

continuum. The scattering matrix is typically unitary on the absolutely continuous spectrum 

and encodes the resonance behavior via its poles in the complex energy plane. 

Another key feature of the model is the phenomenon of resonance overlap. When the energy 

levels of the three discrete states are close to each other, and the coupling to the continuum is 

sufficiently strong, the individual resonances broaden and can overlap. This overlap leads to 

complex interference patterns in the scattering cross-section and is a subject of both 

mathematical and experimental interest. The analysis of such overlapping resonances requires 

sophisticated tools from non-Hermitian perturbation theory and complex scaling. 

From an application perspective, the Friedrichs model with three excitations is relevant in 

several fields. In nuclear physics, it models compound nucleus formation, where multiple 

excited states couple to decay channels. In molecular physics, it helps describe predissociation 

phenomena where vibrational modes interact with electronic continua. In quantum optics, the 

model applies to systems with multi-level atoms interacting with electromagnetic fields. These 

examples underline the model’s versatility and importance in capturing essential aspects of 

realistic systems within a mathematically tractable framework. 

In terms of numerical analysis, the Friedrichs model serves as a useful testbed for evaluating 

algorithms related to resonance detection, spectral approximation, and time evolution. Finite-

rank models, in particular, are amenable to discretization methods, allowing for accurate 

simulation of the spectral and scattering properties. Researchers often employ contour 

integration methods, Padé approximation, or complex scaling techniques to compute the 

resonance poles and visualize the spectral density. 

To summarize, the Friedrichs model with excitation rank equal to three significantly extends 

the classical single-state model and presents rich mathematical structures and physical 

interpretations. The presence of three discrete states interacting with a continuum introduces 

phenomena such as embedded eigenvalues, resonance interference, and spectral instabilities. 
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The combination of operator theory, complex analysis, and scattering theory enables a 

comprehensive understanding of the model’s behavior. These insights contribute not only to 

the abstract theory of operators and spectra but also to practical models in modern physics, 

making the rank-three Friedrichs model a subject of ongoing interest and active research. 

 

Conclusion 

The extended Friedrichs model with excitation rank equal to three provides a powerful 

theoretical framework for analyzing complex interactions between discrete and continuous 

spectral components in quantum systems. By allowing three discrete energy levels to interact 

simultaneously with a continuum, the model captures rich spectral phenomena such as 

embedded eigenvalues, resonance formation, and spectral instability. Through the use of 

operator theory, analytic continuation, and scattering matrix analysis, we have shown how the 

excitation rank directly influences the spectral structure, particularly in determining the 

location and nature of eigenvalues and resonant states. 

This higher-rank formulation reveals intricate behaviors that are absent in simpler models. The 

possibility of overlapping resonances, spectral branching, and mutual interference among 

discrete states highlights the necessity of considering multi-level interactions in realistic 

quantum scenarios. Moreover, the model provides a tractable yet physically relevant setting for 

exploring stability conditions for embedded eigenvalues and for understanding the analytic 

properties of the resolvent and wave operators. 

Beyond its mathematical depth, the rank-three Friedrichs model has significant implications 

for modeling atomic, molecular, and nuclear systems where multiple internal degrees of 

freedom play a crucial role. The insights gained from this spectral analysis not only contribute 

to the foundational understanding of quantum mechanics but also support the development of 

accurate physical models in scattering theory and resonance dynamics. 

Future work may include extending the model to incorporate time-dependent interactions, 

external potentials, or non-Hermitian extensions, which could further enrich the spectral 

landscape. Additionally, numerical approaches for resonance tracking and spectral 

approximation remain important for validating theoretical results and exploring parameter 

regimes that are analytically inaccessible. 

In conclusion, the Friedrichs model with excitation rank equal to three stands as a meaningful 

generalization of a classical spectral model, offering both mathematical rigor and physical 

relevance in the ongoing study of quantum spectral theory. 
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