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Abstract 

This article presents the synthesis, physicochemical properties, and phase relations of solid 

solutions in titanosilicate systems containing alkali metal elements. Structural changes, thermal 

stability, and the interactions between crystalline phases were investigated. Phase 

characterization was performed using X-ray diffraction (XRD), differential thermal analysis 

(DTA), and scanning electron microscopy (SEM). 
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Introduction 

Titanosilicates are widely used in industry due to their high mechanical and thermal stability, 

chemical inertness, and ion-exchange properties. Solid solutions formed in titanosilicate 

systems with alkali metals (Li, Na, K, Rb, Cs) are considered promising candidates for the 

development of new functional materials. This study focuses on the phase formation, 

mechanisms of solid solution formation, and the physicochemical characteristics of these 

materials. 

 

2. Experimental Methods 

2.1. Sample Preparation 

Stoichiometric mixtures of TiO₂, SiO₂, and alkali metal carbonates (Na₂CO₃, K₂CO₃, etc.) were 

thoroughly mixed and calcined in air at 1100–1300°C for 3–5 hours to synthesize the target 

solid solutions. 

 

2.2. Characterization Techniques 

X-ray diffraction (XRD): for phase identification and structural analysis. 

Differential thermal analysis (DTA): for studying thermal behavior and phase transitions. 

Scanning electron microscopy (SEM): for microstructural examination. 
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3. Results 

3.1. Phase Formation 

In the Na₂O–TiO₂–SiO₂ system, crystalline phases such as Na₂TiSiO₅ and Na₂TiSi₂O₇ were 

detected. At elevated temperatures, these phases underwent solid-state interactions, forming 

solid solutions. 

 

3.2. Crystal Structure and Modifications 

XRD results showed that incorporation of larger alkali metal ions (K⁺, Rb⁺) caused changes in 

the unit cell parameters. The expansion of the lattice structure resulted in phase transformations 

at certain compositions. 

 

3.3. Thermal Behavior 

DTA analysis revealed phase transitions in the range of 960–1050°C. Endothermic and 

exothermic peaks corresponded to crystallization and decomposition processes in the system. 

 
FIGURE 1 

 

The projection of the liquidus of the the Na2O‐TiO2‐SiO2 system obtained as a result of this 

study in the temperature range from 900 to 1600 °C. 

Phase equilibria of the Na2O‐TiO2‐SiO2 system between 900 and 1600°C in air 

Phase equilibria in the the Na2O‐TiO2‐SiO2 system were studied at temperatures from 900 to 

1600 °C in air. New data were obtained on the liquidus at TiO2 saturation at 1500 and 1600 

°C.  liquids in solid saturation with SiO2Thio -2, Na₂Ti6O13, Na₂SIO5, Na₂Ti3O7, and in double 
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solid saturation SiO2 + - Thio -2, Thio -2 + h2ti6O13, Na2ti6hours 13 + na2ti3hours 7, 

na2ti6hours 13 + NA2SIO5, and NA2SIO5 + na2ti3hours 7. The comparison with the phase 

diagram estimated using the HTOX and FToxid databases was carried out in the temperature 

range from 1000 to 1600 °C. The data obtained in the course of this study can be used to revise 

and re-optimize existing phase diagrams and databases containing silica, soda, and titanium 

dioxide to obtain a more optimal model. 

 

3.4. Microstructure Analysis 

SEM images demonstrated that the synthesized materials consisted of fine, uniformly 

distributed particles with irregular shapes, indicating a consistent synthesis process. 

4. Discussion 

The formation of solid solutions in alkali titanosilicate systems is strongly influenced by the 

ionic radius of the alkali metal. Smaller ions (Li⁺, Na⁺) integrate more easily into the lattice 

structure, enhancing thermal and structural stability. In contrast, larger ions (Rb⁺, Cs⁺) may 

disrupt the crystal lattice and limit phase stability. The phase transitions are highly sensitive to 

synthesis temperature and initial molar ratios. These results are significant for the development 

of high-performance ceramic materials, ion-exchange substrates, and catalysts. 

 

5. Conclusion 

Solid solutions in titanosilicate systems containing alkali metals can be successfully 

synthesized at high temperatures. The ionic radius of alkali metals significantly affects the 

crystal structure and thermal stability of the resulting materials. These materials are promising 

for use in advanced ceramics, ion-exchange technologies, and catalytic applications. 
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