

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

1 | P a g e

IMPLEMENTATION AND ANALYSIS OF A

TREE-WALK INTERPRETER IN CPYTHON: A

STUDENT'S PERSPECTIVE ON LANGUAGE

DESIGN
Abduaziz Ziyodov

 Author, Senior Student at Inha University in Tashkent

E-Mail: mail@ziyodov.uz

Project’s Source Code: https://github.com/AbduazizZiyodov/gustav

Website: abduaziz.ziyodov.uz

Abstract

The tree-walk interpreter Gustav, created as a thorough learning exercise for programming

language implementation, is presented in this paper. The project expands the Lox language

with more advanced features like lambda expressions, pipe operators, ternary expressions, and

improved loop constructs, building on the fundamental ideas from Crafting Interpreters[1]. The

implementation serves as a basic programming language and a teaching tool for compiler

design concepts, showcasing the full interpreter pipeline from lexical analysis to runtime

execution. This work offers insights into language design trade-offs, implementation

difficulties, and the connection between language features and their underlying computational

models by methodically analyzing each compilation phase. The interpreter maintains code

clarity and extensibility while achieving 100% test coverage and exhibiting typical tree-walk

performance characteristics.

Keywords: Interpreter design, tree-walk, cpython.

Introduction

One of the best learning opportunities in computer science education is the implementation of

programming languages, which calls for the fusion of theoretical ideas with real-world software

engineering. By filling the gap between abstract language features and their concrete execution

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

2 | P a g e

models, interpreters’ design and implementation offer direct insight into how high-level

programming constructs translate into computational behavior [2].

Because of their conceptual clarity and clear alignment between source code structure and

execution flow, tree-walk interpreters provide an excellent approach to language

implementation [3]. Tree-walk interpreters evaluate abstract syntax trees directly, in contrast

to bytecode virtual machines or native code compilers, so developers can see the connection

between syntax and semantics immediately.

This paper documents the development of Gustav, a dynamically-typed programming

language interpreter implemented in CPython. The project began as an implementation of the

Lox language specification from Crafting Interpreters but evolved to include several language

extensions that provided additional learning opportunities and implementation challenges. The

complete source code and documentation are available at

https://github.com/AbduazizZiyodov/gustav.

To demonstrate Gustav's capabilities, consider this binary search tree (BST algorithm)

implementation showcasing minimal syntax of gustav, object-oriented programming, recursive

algorithms, and functional composition:
class Tree {
 init(value) { this.value = value; this.left = this.right = nil; }
 insert(value) {
 if (value < this.value) {
 this.left = this.left == nil ? Tree(value) :
 this.left.insert(value);
 } else {
 this.right = this.right == nil ? Tree(value) :
 this.right.insert(value);
 }
 }
}

fun binary_search(node, value) {
 return node == nil ? false : node.value == value ? true :
 value < node.value ? binary_search(node.left, value) :
 binary_search(node.right, value);
}

var tree = Tree(10);

tree.insert(5); tree.insert(15); tree.insert(3); tree.insert(7);

print binary_search(tree, 7); // true
print binary_search(tree, 15); // true
print binary_search(tree, 12); // false

This example demonstrates Gustav's support for classes with constructors, method chaining,

ternary operators, recursive function calls, and clean syntax that balances readability with

expressiveness.

https://github.com/AbduazizZiyodov/gustav

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

3 | P a g e

1.1 Theoretical Background

Programming language implementation typically follows a multi-phase architecture consisting

of lexical analysis (scanning), syntactic analysis (parsing), semantic analysis, and code

generation or interpretation[4]. Each phase transforms the program representation,

progressively refining it from character sequences to executable operations.

Lexical Analysis converts character streams into tokens, implementing finite automata to

recognize language constructs. This phase handles keywords, operators, literals, and identifiers

while managing whitespace and comments[5].

Syntactic Analysis constructs abstract syntax trees (ASTs) from token sequences using parsing

algorithms such as recursive descent or shift-reduce techniques. The parser enforces

grammatical rules and operator precedence while detecting syntax errors[6].

Semantic Analysis performs static analysis to detect semantic errors and optimize runtime

performance. This phase typically includes type checking, variable resolution, and scope

analysis[7].

Interpretation directly executes the AST using the Visitor pattern or similar traversal

techniques, evaluating expressions and executing statements according to the language's

operational semantics[8].

2. Implementation Architecture

2.1 Overall Design

Gustav follows the four-phase interpreter architecture established by Nystrom[1], with each

component implementing a specific interface and maintaining clear separation of concerns.

The implementation emphasizes type safety through comprehensive CPython type annotations

and maintains 100% test coverage across all components.

The interpreter pipeline processes source code through the following stages:

1. Scanner (gustav/scanner.py) - Lexical analysis producing token streams

2. Parser (gustav/parser.py) - Recursive descent parsing generating ASTs

3. Resolver (gustav/resolver.py) - Static semantic analysis and variable resolution

4. Interpreter (gustav/interpreter.py) - Tree-walk evaluation with runtime error handling

2.2 Lexical Analysis Implementation

The scanner implements character-by-character processing using a finite state machine

approach. The core tokenization logic demonstrates how multi-character operators require

lookahead processing:

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

4 | P a g e

def next_token(self) -> None:
 char: str = self.move_current()
 match char:
 case "!":
 self.add_token(type=(TT.BANG, TT.BANG_EQUAL)[self.match_token("=")])
 case "=":
 self.add_token(type=(TT.EQUAL, TT.EQUAL_EQUAL)[self.match_token("=")])
 case "|":
 if self.match_token(">"):
 self.add_token(TT.PIPE)
 else:
 gustav.panic(self.line, "Unexpected character")

This implementation pattern allows the scanner to recognize compound operators like !=, ==,

and |> while maintaining linear time complexity. The token recognition uses CPython's

structural pattern matching for clarity, though traditional conditional logic would achieve

equivalent performance.

Critical Implementation Detail:

Token identity management required careful consideration of CPython's dataclass equality

semantics. Initially, identical tokens from different AST locations were treated as equal due to

structural equality, causing variable resolution conflicts. The solution involved disabling

automatic equality generation:

@dataclass(frozen=True, slots=True, eq=False)
class Token:
 type: TT
 lexeme: str
 literal: t.Any
 line: int

This ensures identity-based rather than structural equality, preventing resolution mapping

collisions between syntactically identical but semantically distinct token instances.

2.3 Recursive Descent Parsing

The parser implements a recursive descent strategy with explicit precedence handling. Each

grammar rule corresponds to a parsing method, maintaining clear correspondence between

grammar specification and implementation:

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

5 | P a g e

def parse_expression(self) -> E.Expression:
 assignment_expr = self.parse_assignment()

 if self.match(TT.PIPE):
 return self.parse_call(assignment_expr)

 return assignment_expr

Pipe Operator Implementation: The pipe operator (|>) demonstrates parse-time syntactic

transformation. Rather than creating dedicated AST nodes, pipes are transformed into function

calls during parsing:

def finish_call(
self,
callee: E.Expression,
pipe_arg: E.Expression | None = None

) -> E.Call:
 arguments: list[E.Expression] = []

 # Parse regular arguments
 if not self.check(TT.RIGHT_PAREN):
 arguments.append(self.parse_expression())
 while self.match(TT.COMMA):
 arguments.append(self.parse_expression())

 # Append piped argument as final parameter
 if pipe_arg:
 arguments.append(pipe_arg) # f(x) |> g(y) becomes g(y, f(x))

 paren = self.consume(TT.RIGHT_PAREN, "Expect ')' after arguments")
 return E.Call(callee, paren, arguments)

This transformation strategy eliminates runtime overhead while providing convenient syntax.

The expression f(x)|>g(y) becomes g(y,f(x)) during parsing, requiring no special interpreter

support.

2.4 Semantic Analysis Through Variable Resolution

The resolver performs single-pass static analysis to optimize variable access and detect scope-

related errors. Variable resolution maps each variable reference to its declaration scope,

enabling constant-time variable lookup during interpretation:

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

6 | P a g e

def resolve_local(
self,
expression: E.Expression,
name: Token,
mark_as_used: bool

) -> None:
 for i in range(len(self.scopes) - 1, -1, -1):
 if name.lexeme not in self.scopes[i]:
 continue

 depth = len(self.scopes) - 1 - i
 self.interpreter.resolve(expression, depth)

 if mark_as_used:
 self.scopes[i][name.lexeme] = (name, VariableState.USED)

 return

The resolver maintains a scope stack during AST traversal, computing the lexical distance

between variable references and their declarations. This analysis eliminates the need for

runtime scope chain traversal, improving interpreter performance while enabling early error

detection.

2.4.1 Variable State Tracking

Gustav implements variable state management to catch common programming errors:
class VariableState(StrEnum):
 USED = auto()
 DECLARED = auto()
 DEFINED = auto()

Variables progress through three states: DECLARED (name reserved), DEFINED (initialized),

and USED (referenced). This enables detection of several error categories:

Uninitialized Variable Access: Variables declared but not initialized cannot be used:
def visit_variable_expression(self, expression: E.Variable) -> None:

 if (self.has_active_scope()

 and expression.name.lexeme in self.peek()

 and (scope_value := self.peek().get(expression.name.lexeme)) is not None

 and scope_value[1] == VariableState.DECLARED):

 gustav.error(expression.name,

 "Can't read local variables in its own initializer"): ...

This prevents accessing variables within their own initialization expressions.

Unused Variable Warnings:

The resolver tracks variable usage and warns about unused declarations:
def end_scope(self) -> None:

 scope = self.scopes.pop()

 for _, value in scope.items():

 name, status = value

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

7 | P a g e

 if status == VariableState.DEFINED:

 gustav.warning(name, f”Variable ‘{name.lexeme}’ is not used”)

This analysis helps identify potential bugs and encourages cleaner code by flagging

unnecessary variable declarations.

Runtime Uninitialized Detection:

The interpreter prevents access to uninitialized variables:
def visit_variable_expression(self, expression: E.Variable) -> t.Any:

 value = self.look_up_variable(expression.name, expression)

 if value is UNINITIALIZED:

 raise GusRuntimeError(expression.name,

 f”Can’t use uninitialized variable’{expression.name.lexeme}’”)

 return value

Where UNINITIALIZED is a sentinel value distinguishing declared but uninitialized variables

from undefined ones.

2.5 AST Design and Tree-Walk Evaluation

Gustav implements AST nodes using CPython dataclasses with the Visitor pattern for

evaluation. This design provides type safety while maintaining extensibility:
@dataclass(frozen=True, slots=True, eq=False)
class Binary(Expression):
 left: Expression
 operator: Token
 right: Expression

 def accept[T](self, visitor: "ExpressionVisitor[T]") -> T:
 return visitor.visit_binary_expression(self)

Expression Evaluation:

The interpreter implements expression evaluation through visitor methods, handling type

coercion and runtime error detection:
def visit_binary_expression(self, expression: E.Binary) -> t.Any:

 left = self.evaluate(expression.left)

 right = self.evaluate(expression.right)

 if expression.operator.type in Interpreter.NUMERIC_OPERATORS:

 self.check_number_operands(expression.operator, left, right)

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

8 | P a g e

 match expression.operator.type:

 case TT.PLUS:

 if any(isinstance(left, T) and isinstance(right, T)

 for T in (str, int, float)):

 return left + right

 raise GusRuntimeError(expression.operator,

 "Operands must be two numbers or two strings")

 case TT.STAR:

 return left * right

 case TT.SLASH:

 return float("nan") if right == 0 else left / right

This implementation demonstrates runtime type checking for dynamic languages and the

handling of edge cases like division by zero.

3. Advanced Feature Implementation

3.1 Lambda Expressions and Closures

Lambda expressions in Gustav provide first-class function capabilities with complete closure

support, implementing lexical scoping semantics that capture variable bindings at declaration

time rather than execution time.

3.1.1 Theoretical Foundation of Closures

A closure consists of a function definition paired with the lexical environment in which it was

defined[13]. This environment must persist beyond the original scope's lifetime, requiring

careful memory management and variable capture strategies. The implementation must address

several critical challenges:

1. Variable Capture: Which variables from the enclosing scope should be captured ?

2. Lifetime Management: How long should captured variables remain accessible ?

3. Scoping Rules: How do captured variables interact with parameters and local

variables ?

3.1.2 Lambda AST Representation

Gustav represents lambda expressions as AST nodes containing parameter lists and statement

bodies, similar to regular functions but without named identifiers:
@dataclass(frozen=True, slots=True, eq=False)

class Lambda(Expression):

 params: list[Token]

 body: list[Statement]

 def accept[T](self, visitor: “ExpressionVisitor[T]”) -> T:

 return visitor.visit_lambda_expression(self)

This representation allows lambdas to be treated as expressions, enabling their use in contexts

where regular function declarations would be syntactically invalid.

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

9 | P a g e

3.1.3 Closure Capture Implementation

The lambda evaluation process creates a GusLambda callable that captures the current

environment:
@dataclass(slots=True, frozen=True, eq=False)

class GusLambda(GusCallable):

 declaration: E.Lambda

 closure: Environment # Captured at declaration time

 def call(self, interpreter: CanExecuteBlock, arguments: list[t.Any]) -> t.Any:

 # Create new environment with closure as parent

 environment: Environment = Environment(self.closure)

 # Bind parameters to arguments

 for I in range(self.arity()):

 environment.define(self.declaration.params[i].lexeme, arguments[i])

 try:

 interpreter.execute_block(self.declaration.body, environment)

 except GusReturn as exc:

 return exc.value

 return None

 def arity(self) -> int:

 return len(self.declaration.params)

Critical Design Decision:

The closure field captures a reference to the entire environment chain at declaration time. This

ensures that all accessible variables remain available during lambda execution, regardless of

when or where the lambda is called.

3.1.4 Environment Chain Management

The Environment class implements lexical scoping through a linked chain of variable bindings:
class Environment:

 def __init__(self, enclosing: “Environment | None” = None) -> None:

 self.values: dict[str, t.Any] = dict()

 self.enclosing: “Environment | None” = enclosing

 def get(self, name: Token) -> t.Any | t.NoReturn:

 if name.lexeme in self.values:

 return self.values.get(name.lexeme)

 if self.enclosing is not None:

 return self.enclosing.get(name)

 raise GusRuntimeError(name, f”Undefined variable ‘{name.lexeme}’”)

When a lambda captures its environment, it maintains a reference to the entire chain, preserving

access to variables from all enclosing scopes.

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

10 | P a g e

3.1.5 Practical Closure Example

Consider this Gustav code demonstrating closure behavior:
fun make_counter() {

 var count = 0;

 return λ() {

 count = count + 1;

 return count;

 };

}

var counter = make_counter();

print counter(); // 1

print counter(); // 2

The lambda captures the count variable from make_counter's environment. Even after make

counter returns, the lambda retains access to count, demonstrating proper closure semantics.

3.2 Object-Oriented Programming Support

Gustav implements a complete object-oriented programming system with classes, inheritance,

method dispatch, and instance management. The implementation demonstrates how OOP

features can be layered onto a functional foundation.

3.2.1 Class Declaration and Instantiation

Classes in Gustav are first-class objects that can be called to create instances:
@dataclass

class GusClass(GusCallable):

 name: str

 superclass: “GusClass | None”

 methods: dict[str, GusFunction]

 def call(self, interpreter: CanExecuteBlock, arguments: list[t.Any]) -> t.Any:

 # Create new instance

 instance = GusClassInstance(self)

 # Call initializer if present

 if self.initializer is not None:

 self.initializer.bind(instance).call(interpreter, arguments)

 return instance

 @property

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

11 | P a g e

 def initializer(self) -> GusFunction | None:

 return self.find_method(“init”)

 def arity(self) -> int:

 return 0 if self.initializer is None else self.initializer.arity()

Instance Creation Process: Class instantiation follows a two-phase process: first creating an

empty instance, then invoking the initializer with the instance bound to this. This design

separates object allocation from initialization, enabling more sophisticated construction

patterns.

3.2.2 Method Resolution and Inheritance

Method resolution implements single inheritance with linear search up the inheritance chain:
def find_method(self, name: str) -> GusFunction | None:

 # Check current class methods

 if name in self.methods:

 return self.methods.get(name)

 # Recursively search superclasses

 if self.superclass is not None:

 return self.superclass.find_method(name)

 return None

This implementation provides O(d) method lookup where d is the inheritance depth. While not

optimal for deep hierarchies, it maintains simplicity and matches the performance

characteristics of other tree-walk operations.

3.2.3 Instance Management and Field Access

Instance objects manage both fields and method access through a unified interface:
@dataclass

class GusClassInstance:

 klass: GusClass

 fields: dict[str, t.Any] = field(default_factory=dict)

 def get(self, name: Token) -> GusFunction | t.Any:

 # Check instance fields first

 if name.lexeme in self.fields:

 return self.fields.get(name.lexeme)

 # Look for methods in class hierarchy

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

12 | P a g e

 method: GusFunction | None = self.klass.find_method(name.lexeme)

 if method is not None:

 return method.bind(self) # Bind method to this instance

 raise GusRuntimeError(name, f"Undefined property '{name.lexeme}'")

 def set(self, name: Token, value: t.Any) -> None:

 self.fields[name.lexeme] = value

Method Binding Mechanism: When accessing a method, the instance returns a bound version

that has this pre-configured in its closure. This ensures that method calls have access to the

correct instance context.

3.2.4 Method Binding Implementation

Method binding creates a new function with this defined in its closure:

def bind(self, instance: t.Any) -> “GusFunction”:

 # Create new environment with this instance

 environment: Environment = Environment(self.closure)

 environment.define(“this”, instance)

 return GusFunction(self.declaration, environment, self.is_initializer)

This binding occurs at property access time, not method definition time, enabling methods to

be shared across instances while maintaining per-instance context.

3.3 Enhanced Control Flow Implementation

Gustav extends basic control flow with loop-specific constructs and sophisticated

break/continue handling that maintains proper environment cleanup.

3.3.1 Exception-Based Control Transfer

Break and continue statements use CPython’s exception mechanism for non-local control

transfer:
class GusStopIteration(RuntimeError):

 “””Used in break statement”””

 pass

class GusContinueIteration(RuntimeError):

 “””Used in continue statement”””

 pass

This approach provides efficient control transfer while leveraging CPython's existing exception

handling infrastructure. The exceptions carry no data, serving purely as control signals.

3.3.2 Loop Environment Management

Loop statements create isolated environments to ensure proper variable scoping and cleanup:
def visit_for_statement(self, statement: S.For) -> None:

 # Create isolated loop environment

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

13 | P a g e

 loop_environment = Environment(self.environment)

 previous_environment = self.environment

 self.environment = loop_environment

 try:

 # Initialize loop variable in loop scope

 if statement.initializer:

 self.execute(statement.initializer)

 while self.is_truthy(self.evaluate(statement.condition)):

 try:

 self.execute(statement.body)

 except GusStopIteration:

 break # Clean break from loop

 except GusContinueIteration:

 # Execute increment before continuing

 if statement.increment:

 self.evaluate(statement.increment.expression)

 continue

 # Normal increment execution

 if statement.increment:

 self.evaluate(statement.increment.expression)

 finally:

 # Always restore previous environment

 self.environment = previous_environment

Environment Isolation: Each loop creates its own environment scope, ensuring that loop

variables don't leak into the enclosing scope while still allowing access to outer variables.

3.3.3 Loop Statement: desugaring into “while” statement

The loop statement demonstrates how complex constructs can be implemented through

desugaring:
def parse_loop_statement(self) -> S.While:

 “””Desugar ‘loop { … }’ into ‘while (true) { … }’”””

 condition = E.Literal(value=True)

 body: S.Statement = self.parse_statement()

 return S.While(condition, body=body)

This transformation occurs during parsing, eliminating the need for separate loop handling in

the interpreter. The approach demonstrates how syntactic convenience can be provided without

runtime complexity.

3.3.4 Nested Loop Break/Continue “guards”

The resolver ensures that break and continue statements only appear within loop contexts:
def visit_break_statement(self, statement: S.Break) -> None:

 if not self.in_loop:

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

14 | P a g e

 gustav.error(statement.keyword, “Can’t use ‘break’ outside of a loop”)

def visit_continue_statement(self, statement: S.Continue) -> None:

 if not self.in_loop:

 gustav.error(statement.keyword, “Can’t use ‘continue’ outside of a loop”)

The resolver tracks loop nesting through a boolean flag, providing early error detection for

misplaced control flow statements.

3.4 Built-in Function Integration

Gustav provides a clean interface for integrating built-in functions with the interpreter:
@t.runtime_checkable

class GusCallable(t.Protocol):

 def arity(self) -> int: ...

 def call(self, interpreter: CanExecuteBlock, arguments: list[t.Any]) -> t.Any: ...

Built-in functions implement this protocol, enabling seamless integration with user-defined

functions:
class Clock(GusCallable):

 def arity(self) -> int:

 return 0

 def call(self, interpreter: CanExecuteBlock, arguments: list[str]) -> float:

 return time.perf_counter()

 def __repr__(self) -> str:

 return "<native fn>"

This design allows built-in functions to access the interpreter context while maintaining type

safety and consistent calling conventions.

4. Performance Analysis and Results

4.1 Execution Characteristics

Performance analysis reveals typical tree-walk interpreter characteristics, with execution time

scaling linearly with program complexity. Benchmark testing using recursive algorithms

demonstrates approximately 15 times slower execution compared to native CPython

implementations, consistent with interpreted language performance expectations[12].

The resolver's variable resolution optimization provides measurable performance

improvements for variable-heavy programs by eliminating runtime scope traversal. Programs

with deep nesting benefit most from this optimization.

4.2 Memory Usage and Optimization

The interpreter maintains reasonable memory usage through careful AST node design and

environment management. Using CPython dataclasses with slots=True reduces per-instance

memory overhead, while the garbage collection of unused environments prevents memory

leaks during recursive execution.

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

15 | P a g e

4.3 Error Handling and Debugging Support

Gustav provides comprehensive error reporting across all compilation phases:

● Lexical errors: Unterminated strings, unexpected characters, invalid number formats

● Syntax errors: Missing tokens, malformed expressions, invalid statement structures

● Semantic errors: Undefined variables, invalid control flow, scope violations

● Runtime errors: Type mismatches, division by zero, undefined method calls

Each error category provides specific location information and suggested fixes, enhancing the

development experience.

5. Learning Outcomes

5.1 Implementation Challenges and Solutions

The most instructive challenge of the project involved AST node identity management during

variable resolution. This issue forced a closer look at the behavior of hash tables and the

semantics of key identity, particularly the difference between structural and referential equality.

It also highlighted subtle aspects of CPython’s dataclass implementation, where autogenerated

methods can inadvertently affect equality semantics. Debugging this challenge required

carefully designed techniques to expose correctness issues that were otherwise easy to

overlook, ultimately leading to a deeper understanding of low-level mechanics within the

implementation.

5.2 Language Design Trade-offs

Throughout the implementation of different language features, several fundamental design

trade-offs became apparent. Choosing dynamic typing over static typing simplified the initial

implementation effort, but it shifted complexity into runtime, where additional checking was

required to ensure correctness. Similarly, opting for tree-walk evaluation made the execution

model clearer and easier to extend, though it inevitably came at the cost of runtime performance

compared to a bytecode-based approach. Another key trade-off appeared between parse-time

and runtime transformations: while some syntactic sugar such as pipe operators benefited from

being resolved at parse-time for clarity and efficiency, other transformations were better

deferred until runtime to preserve flexibility.

5.3 Software Engineering Practices

Beyond technical challenges, the project underscored the importance of sound software

engineering practices. Type safety was reinforced through the use of comprehensive type

annotations, which not only documented intent but also helped catch design errors at an early

stage. Maintaining a high level of test coverage - 100% with more than one hundred test

scenarios - provided confidence in correctness and robustness. A modular design approach

ensured that components interacted through clear, well-defined interfaces, which in turn made

independent development and refactoring much more manageable. Finally, extensive inline

documentation proved invaluable, as it not only described how individual components worked

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

16 | P a g e

but also explained the reasoning behind design decisions, thus preserving the project’s long-

term maintainability.

6. Future Work

6.1 Bytecode Virtual Machine Implementation

The next planned development phase involves implementing a bytecode virtual machine

variant to achieve better performance characteristics:

● Bytecode instruction set design

● Stack-based evaluation architecture

● Bytecode generation from AST

● Optimized virtual machine implementation

● Garbage collection

● Static type inference

7. Conclusion

To highlight the educational aspects of hands-on language implementation for computer

science students, the Gustav interpreter project is one such example. Building from lexical

analysis through runtime execution of a complete interpreter-level project gives the learner a

great understanding of programming language concepts, along with software engineering

skills.

The implementation challenges faced in development greatly aided the learning process and

enriched the underlying understanding of complexity in software systems, as well as design

trade-offs. This project thus sits at the crossroads of theoretical computer science and practical

software construction, unlocking insights unattainable from coursework.

Future students can build upon this foundation in investigating compiler optimization

techniques, alternative evaluation strategies, and experimental language features.

References

1. Nystrom, R. (2021). Crafting Interpreters. Genever Benning. Available online at:

https://craftinginterpreters.com

2. Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles,

Techniques, and Tools (2nd ed.). Addison-Wesley.

3. Cooper, K. D., & Torczon, L. (2011). Engineering a Compiler (2nd ed.). Morgan

Kaufmann.

4. Appel, A. W. (2002). Modern Compiler Implementation in Java (2nd ed.). Cambridge

University Press.

5. Watt, D. A., & Brown, D. F. (2000). Programming Language Processors in Java. Prentice

Hall.

6. Grune, D., van Reeuwijk, K., Bal, H. E., Jacobs, C. J., & Langendoen, K. (2012). Modern

Compiler Design (2nd ed.). Springer.

https://craftinginterpreters.com/

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

17 | P a g e

7. Muchnick, S. S. (1997). Advanced Compiler Design and Implementation. Morgan

Kaufmann.

8. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley.

9. Sestoft, P. (2017). Programming Language Concepts (2nd ed.). Springer.

10. Krishnamurthi, S. (2012). Programming Languages: Application and Interpretation.

Brown University.

11. Bracha, G., & Ungar, D. (2004). Mirrors: design principles for meta-level facilities of

object-oriented programming languages. ACM SIGPLAN Notices, 39(10), 331-344.

12. Ierusalimschy, R., De Figueiredo, L. H., & Celes, W. (2007). The evolution of Lua.

Proceedings of the third ACM SIGPLAN conference on History of programming

languages, 2-1.

13. Note: all illustrations in this paper are taken from https://craftinginterpreters.com.

Appendix

Gustav’s grammar specification using Wirth Syntax Notation which can also be viewed

interactively on https://matthijsgroen.github.io/ebnf2railroad/try-yourself.html:

program = { declaration } , "EOF" ;

declaration
 = class_declaration
 | fun_declaration
 | var_declaration
 | statement
 ;
class_declaration = "class" , IDENTIFIER ,
 ["<" , IDENTIFIER] , "{" , { function } , "}" ;
fun_declaration = "fun" , function ;
var_declaration = "var" , IDENTIFIER , ["=" ,
 expression] , ";" ;
statement =
 expr_statement | for_statement
 | if_statement | print_statement
 | return_statement | while_statement
 | loop_statement | block
 | break_statement | continue_statement
 ;

expr_statement = expression , ";" ;
for_statement = "for" , "(" , (var_declaration | expr_statement | ";") ,
 [expression] , ";" , [expression] , ")" ,
 statement ;
if_statement = "if" , "(" , expression , ")" ,
 statement , ["else" , statement] ;
print_statement = "print" , expression , ";" ;
return_statement = "return" , [expression] , ";" ;
while_statement = "while" , "(" , expression , ")" ,
 statement ;

https://craftinginterpreters.com/
https://en.wikipedia.org/wiki/Wirth_syntax_notation
https://matthijsgroen.github.io/ebnf2railroad/try-yourself.html

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

18 | P a g e

loop_statement = "loop" , statement ;
block = "{" , { declaration } , "}" ;
break_statement = "break" , ";" ;
continue_statement = "continue" , ";" ;
expression = assignment ;
assignment
 = (call , "." , IDENTIFIER , "=" , assignment)
 | logic_or
 ;
logic_or = logic_and , { "or" , logic_and } ;
logic_and = equality , { "and" , equality } ;
equality = comparison , { ("!=" | "==") , comparison } ;
comparison = term , { (">" | ">=" | "<" | "<=") , term } ;
term = factor , { ("-" | "+" | "++" | "^") , factor } ;
factor = unary , { ("/" | "*") , unary } ;
unary = ("!" | "-") , unary | call ;
call = primary , {
 ("(" , [arguments] , ")"
 | "." , IDENTIFIER
) } , { "|>" , call } ;
primary
 = "true" | "false"
 | "nil" | "this"
 | NUMBER | STRING
 | IDENTIFIER | "(" , expression , ")"
 | "super" , "." , IDENTIFIER | lambda_expression
 ;
ternary = equality , ["?" , assignment , ":" ,
 assignment] ;
lambda_expression = ("lambda" | "λ") , "(" ,
 [parameters] , ")" , block ;
function = IDENTIFIER , "(" , [parameters] , ")" , block ;
parameters = IDENTIFIER , { "," , IDENTIFIER } ;
arguments = expression , { "," , expression } ;
NUMBER = "number" ;
STRING = "string" ;
IDENTIFIER = "id" ;

