C==

«F

4 4
G

Web of Scientists and Scholars: Journal of Multidisciplinary Research

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

IMPLEMENTATION AND ANALYSIS OF A
TREE-WALK INTERPRETER IN CPYTHON: A
STUDENT'S PERSPECTIVE ON LANGUAGE
DESIGN

Abduaziz Ziyodov
Author, Senior Student at Inha University in Tashkent
E-Mail: mail@ziyodov.uz
Project’s Source Code: https://github.com/AbduazizZiyodov/gustav
Website: abduaziz.ziyodov.uz

Abstract
The tree-walk interpreter Gustav, created as a thorough learning exercise for programming

language implementation, is presented in this paper. The project expands the Lox language
with more advanced features like lambda expressions, pipe operators, ternary expressions, and
improved loop constructs, building on the fundamental ideas from Crafting Interpreters[1]. The
implementation serves as a basic programming language and a teaching tool for compiler
design concepts, showcasing the full interpreter pipeline from lexical analysis to runtime
execution. This work offers insights into language design trade-offs, implementation
difficulties, and the connection between language features and their underlying computational
models by methodically analyzing each compilation phase. The interpreter maintains code
clarity and extensibility while achieving 100% test coverage and exhibiting typical tree-walk
performance characteristics.

Keywords: Interpreter design, tree-walk, cpython.

Introduction

Haskell
CPython
YARV (Ruby)

Gcc

MRI (Ruby)

TypeScript

Lua clox Go
Guile (Scheme)

Scala
V8 (Js)

Jlox

CoffeeScript

Rust

COMPILER INTERPRETER
One of the best learning opportunities in computer science education is the implementation of

programming languages, which calls for the fusion of theoretical ideas with real-world software
engineering. By filling the gap between abstract language features and their concrete execution

1|Page

&) webofjournals.com/index.php/12

C= =

"
fw

I

Journal of Multidisciplinary Research 'i

wn
L
L
O
e
O
0p
®)
-
©
(7))
=
2
=
-
-m
@)
0p
(T
@)
O
=

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

models, interpreters’ design and implementation offer direct insight into how high-level
programming constructs translate into computational behavior [2].

Because of their conceptual clarity and clear alignment between source code structure and
execution flow, tree-walk interpreters provide an excellent approach to language
implementation [3]. Tree-walk interpreters evaluate abstract syntax trees directly, in contrast
to bytecode virtual machines or native code compilers, so developers can see the connection
between syntax and semantics immediately.

This paper documents the development of Gustav, a dynamically-typed programming
language interpreter implemented in CPython. The project began as an implementation of the
Lox language specification from Crafting Interpreters but evolved to include several language
extensions that provided additional learning opportunities and implementation challenges. The
complete source code and documentation are available at
https://github.com/AbduazizZiyodov/gustav.

To demonstrate Gustav's capabilities, consider this binary search tree (BST algorithm)
implementation showcasing minimal syntax of gustav, object-oriented programming, recursive

algorithms, and functional composition:

class Tree {
init(value) { this.value = value; this.left = this.right = nil; }
insert(value) {
if (value < this.value) {
this.left = this.left == nil ? Tree(value) :
this.left.insert(value);
}else {
this.right = this.right == nil ? Tree(value) :
this.right.insert(value);
}
}
}

fun binary_search(node, value) {
return node == nil ? false : node.value == value ? true :
value < node.value ? binary_search(node.left, value) :
binary_search(node.right, value);

1

var tree = Tree(10);

tree.insert(5); tree.insert(15); tree.insert(3); tree.insert(7);
print binary_search(tree, 7); // true

print binary_search(tree, 15); // true
print binary_search(tree, 12); // false

This example demonstrates Gustav's support for classes with constructors, method chaining,
ternary operators, recursive function calls, and clean syntax that balances readability with
expressiveness.

2|Page

&) webofjournals.com/index.php/12

https://github.com/AbduazizZiyodov/gustav

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

Ee)
H
N

e
),

]
i
I

1.1 Theoretical Background
Programming language implementation typically follows a multi-phase architecture consisting
of lexical analysis (scanning), syntactic analysis (parsing), semantic analysis, and code

i

generation or interpretation[4]. Each phase transforms the program representation,
progressively refining it from character sequences to executable operations.

Lexical Analysis converts character streams into tokens, implementing finite automata to
recognize language constructs. This phase handles keywords, operators, literals, and identifiers
while managing whitespace and comments[5].

Syntactic Analysis constructs abstract syntax trees (ASTs) from token sequences using parsing
algorithms such as recursive descent or shift-reduce techniques. The parser enforces
grammatical rules and operator precedence while detecting syntax errors[6].

Semantic Analysis performs static analysis to detect semantic errors and optimize runtime
performance. This phase typically includes type checking, variable resolution, and scope
analysis[7].

Interpretation directly executes the AST using the Visitor pattern or similar traversal
techniques, evaluating expressions and executing statements according to the language's
operational semantics[8].

2. Implementation Architecture

2.1 Overall Design

Gustav follows the four-phase interpreter architecture established by Nystrom[1], with each
component implementing a specific interface and maintaining clear separation of concerns.
The implementation emphasizes type safety through comprehensive CPython type annotations
and maintains 100% test coverage across all components.

The interpreter pipeline processes source code through the following stages:

Scanner (gustav/scanner.py) - Lexical analysis producing token streams

Parser (gustav/parser.py) - Recursive descent parsing generating ASTs

Resolver (gustav/resolver.py) - Static semantic analysis and variable resolution

b=

Interpreter (gustav/interpreter.py) - Tree-walk evaluation with runtime error handling

2.2 Lexical Analysis Implementation

11
~

min | [+ [max |[[)]||/]|]|2

var average

The scanner implements character-by-character processing using a finite state machine
approach. The core tokenization logic demonstrates how multi-character operators require
lookahead processing:

e
O
—
qo!
)
wn
@
oc
e
L
qo!
k=
!
O
82
O
==
)
=
(T
O
=
-
(-
-
@)
S
0
(-
L
O
e
o
0p
®)
-
©
7p)
=
2
)
-
QO
@)
0p
Uy—
@)
O
=

3|Page

&) webofjournals.com/index.php/12

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

C= =

"
fw

I

def next_token(self) -> None:
char: str = self.move_current()
match char:
case "I":
self.add_token(type=(TT.BANG, TT.BANG_EQUAL)[self.match_token("=")])
case "=":
self.add_token(type=(TT.EQUAL, TT.EQUAL_EQUAL)[self.match_token("=")])
case "|"™
if self.match_token(">"):
self.add_token(TT.PIPE)
else:

gustav.panic(self.line, "Unexpected character")

i

This implementation pattern allows the scanner to recognize compound operators like !=, ==,
and [> while maintaining linear time complexity. The token recognition uses CPython's
structural pattern matching for clarity, though traditional conditional logic would achieve
equivalent performance.

Critical Implementation Detail:

Token identity management required careful consideration of CPython's dataclass equality
semantics. Initially, identical tokens from different AST locations were treated as equal due to
structural equality, causing variable resolution conflicts. The solution involved disabling
automatic equality generation:

@dataclass(frozen=True, slots=True, eq=False)
class Token:

type: TT

lexeme: str

literal: t.Any

line: int

Journal of Multidisciplinary Research

This ensures identity-based rather than structural equality, preventing resolution mapping
collisions between syntactically identical but semantically distinct token instances.

2.3 Recursive Descent Parsing

Expr.Binary

Expr.Binary Expr.Literal

Stmt .Var

Expr.Variable | min | [max | ExprVariable

The parser implements a recursive descent strategy with explicit precedence handling. Each
grammar rule corresponds to a parsing method, maintaining clear correspondence between
grammar specification and implementation:

wn
L
L
O
e
O
0p
®)
-
©
(7))
=
2
=
-
-CD
@)
0p
(T
@)
O
=

4|Page

&) webofjournals.com/index.php/12

Ee)
tl
N

"
fw

I

Research 'ﬁ

inary

|

ISsCip

Journal of Mult

wn
L
L
O
e
O
0p
®)
-
©
(7))
=
2
=
-
-CD
@)
0p
(T
@)
O
=

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

def parse_expression(self) -> E.Expression:
assignment_expr = self.parse_assignment()

if self.match(TT.PIPE):
return self.parse_call(assignment_expr)

return assignment_expr

Pipe Operator Implementation: The pipe operator (|>) demonstrates parse-time syntactic
transformation. Rather than creating dedicated AST nodes, pipes are transformed into function

calls during parsing:

def finish_call(
self,
callee: E.Expression,
pipe_arg: E.Expression | None = None
) -> E.Call:
arguments: list[E.Expression] =[]

Parse regular arguments
if not self.check(TT.RIGHT_PAREN):
arguments.append(self.parse_expression())
while self.match(TT.COMMA):
arguments.append(self.parse_expression())

Append piped argument as final parameter
if pipe_arg:
arguments.append(pipe_arg) #f(x) |> g(y) becomes g(y, f(x))

paren = self.consume(TT.RIGHT_PAREN, "Expect ') after arguments")
return E.Call(callee, paren, arguments)

This transformation strategy eliminates runtime overhead while providing convenient syntax.
The expression f(x)|>g(y) becomes g(y,f(x)) during parsing, requiring no special interpreter
support.

2.4 Semantic Analysis Through Variable Resolution

GLOBAL BLOCK y— showA() BODY

a — “global” showA — <fn showA> (empty)

({1
a — “block™

The resolver performs single-pass static analysis to optimize variable access and detect scope-
related errors. Variable resolution maps each variable reference to its declaration scope,
enabling constant-time variable lookup during interpretation:

S5|Page

&) webofjournals.com/index.php/12

C= =

d‘*
ls W

Iy

Research 'i

inary

iscipli

Journal of Mult

7))
(-
L
O
e
O
0p
©O
-
©
7p)
=
2
)
-
@
@)
0p
Uy—
O
O
gg

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

def resolve_local(
self,
expression: E.Expression,
name: Token,
mark_as_used: bool

) -> None:

foriin range(len(self.scopes) - 1, -1, -1):
if name.lexeme not in self.scopes|i]:
continue

depth = len(self.scopes) - 1 - i
self.interpreter.resolve(expression, depth)

if mark_as_used:
self.scopes[i][name.lexeme] = (name, VariableState.USED)

return

The resolver maintains a scope stack during AST traversal, computing the lexical distance
between variable references and their declarations. This analysis eliminates the need for
runtime scope chain traversal, improving interpreter performance while enabling early error
detection.

2.4.1 Variable State Tracking

Gustav implements variable state management to catch common programming errors:

class VariableState(StrEnum):
USED = auto()
DECLARED = auto()
DEFINED = auto()

Variables progress through three states: DECLARED (name reserved), DEFINED (initialized),
and USED (referenced). This enables detection of several error categories:

Uninitialized Variable Access: Variables declared but not initialized cannot be used:
def visit_variable_expression(self, expression: E.Variable) -> None:
if (self.has_active_scope()
and expression.name.lexeme in self.peek()
and (scope_value := self.peek().get(expression.name.lexeme)) is not None
and scope_value[1] == VariableState.DECLARED):
gustav.error(expression.name,

"Can't read local variables in its own initializer"): ...

This prevents accessing variables within their own initialization expressions.

Unused Variable Warnings:

The resolver tracks variable usage and warns about unused declarations:
def end_scope(self) -> None:
scope = self.scopes.pop()

for _, value in scope.items():
name, status = value

6|Page

&) webofjournals.com/index.php/12

C= =

d‘*
ls W

Iy

Research 'i

inary

iscipli

Journal of Mult

7))
(-
L
O
e
O
0p
©O
-
©
7p)
=
2
)
-
@
@)
0p
Uy—
O
O
g

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

if status == VariableState.DEFINED:
gustav.warning(name, f"Variable ‘{name.lexeme}’ is not used”)

This analysis helps identify potential bugs and encourages cleaner code by flagging
unnecessary variable declarations.

Runtime Uninitialized Detection:

The interpreter prevents access to uninitialized variables:
def visit_variable_expression(self, expression: E.Variable) -> t.Any:
value = self.look_up_variable(expression.name, expression)

if value is UNINITIALIZED:
raise GusRuntimeError(expression.name,

f”Can’t use uninitialized variable’{expression.name.lexeme}’”)

return value

Where UNINITIALIZED is a sentinel value distinguishing declared but uninitialized variables
from undefined ones.

2.5 AST Design and Tree-Walk Evaluation

Gustav implements AST nodes using CPython dataclasses with the Visitor pattern for

evaluation. This design provides type safety while maintaining extensibility:

@dataclass(frozen=True, slots=True, eq=False)
class Binary(Expression):

left: Expression

operator: Token

right: Expression

def accept[T](self, visitor: "ExpressionVisitor[T]") -> T:
return visitor.visit_binary_expression(self)

Expression Evaluation:
The interpreter implements expression evaluation through visitor methods, handling type

coercion and runtime error detection:

def visit_binary_expression(self, expression: E.Binary) -> t.Any:
left = self.evaluate(expression.left)
right = self.evaluate(expression.right)

if expression.operator.type in Interpreter. NUMERIC_OPERATORS:
self.check_number_operands(expression.operator, left, right)

T7|Page

&) webofjournals.com/index.php/12

Ee)
tr
N

"
fw

I

Research 'i

inary

|

ISsCip

Journal of Mult

wn
L
L
O
e
O
0p
®)
-
©
(7))
=
2
=
-
-CD
@)
0p
(T
@)
O
=

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

match expression.operator.type:
case TT.PLUS:

if any(isinstance(left, T) and isinstance(right, T)

for Tin (str, int, float)):
return left + right
raise GusRuntimeError(expression.operator,
"Operands must be two numbers or two strings")

case TT.STAR:

return left * right
case TT.SLASH:

return float("nan") if right == 0 else left / right

This implementation demonstrates runtime type checking for dynamic languages and the
handling of edge cases like division by zero.

3. Advanced Feature Implementation

3.1 Lambda Expressions and Closures

Lambda expressions in Gustav provide first-class function capabilities with complete closure
support, implementing lexical scoping semantics that capture variable bindings at declaration
time rather than execution time.

3.1.1 Theoretical Foundation of Closures
A closure consists of a function definition paired with the lexical environment in which it was
defined[13]. This environment must persist beyond the original scope's lifetime, requiring
careful memory management and variable capture strategies. The implementation must address
several critical challenges:

1. Variable Capture: Which variables from the enclosing scope should be captured ?

2. Lifetime Management: How long should captured variables remain accessible ?

3. Scoping Rules: How do captured variables interact with parameters and local

variables ?

3.1.2 Lambda AST Representation
Gustav represents lambda expressions as AST nodes containing parameter lists and statement

bodies, similar to regular functions but without named identifiers:
@dataclass(frozen=True, slots=True, eq=False)
class Lambda(Expression):

params: list[Token]

body: list[Statement]

def accept[T](self, visitor: “ExpressionVisitor[T]”) -> T:
return visitor.visit_lambda_expression(self)

This representation allows lambdas to be treated as expressions, enabling their use in contexts
where regular function declarations would be syntactically invalid.

8|Page

&) webofjournals.com/index.php/12

Ee)
tl
N

e

"':IF

Research 'i

inary

iscipli

Journal of Mult

7))
(-
L
O
e
O
0p
©O
-
©
7p)
=
2
)
-
@
@)
0p
Uy—
O
O
g

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

3.1.3 Closure Capture Implementation
The lambda evaluation process creates a GusLambda callable that captures the current
environment:
@dataclass(slots=True, frozen=True, eq=False)
class GusLambda(GusCallable):
declaration: E.Lambda
closure: Environment # Captured at declaration time

def call(self, interpreter: CanExecuteBlock, arguments: list[t.Any]) -> t.Any:
Create new environment with closure as parent
environment: Environment = Environment(self.closure)

Bind parameters to arguments
for l'in range(self.arity()):
environment.define(self.declaration.paramsli].lexeme, arguments[i])

try:

interpreter.execute_block(self.declaration.body, environment)
except GusReturn as exc:

return exc.value

return None

def arity(self) -> int:
return len(self.declaration.params)

Critical Design Decision:

The closure field captures a reference to the entire environment chain at declaration time. This
ensures that all accessible variables remain available during lambda execution, regardless of
when or where the lambda is called.

3.1.4 Environment Chain Management

The Environment class implements lexical scoping through a linked chain of variable bindings:
class Environment:
def __init__(self, enclosing: “Environment | None” = None) -> None:
self.values: dict[str, t.Any] = dict()
self.enclosing: “Environment | None” = enclosing

def get(self, name: Token) -> t.Any | t.NoReturn:
if name.lexeme in self.values:
return self.values.get(name.lexeme)

if self.enclosing is not None:
return self.enclosing.get(name)

raise GusRuntimeError(name, f”Undefined variable ‘{name.lexeme}’”)

When a lambda captures its environment, it maintains a reference to the entire chain, preserving
access to variables from all enclosing scopes.
9|Page

&) webofjournals.com/index.php/12

Ee)
tl
N

d‘*
ls W

Iy

Research 'i

inary

|

ISsCip

Journal of Mult

7))
(-
L
O
e
O
0p
©O
-
©
7p)
=
2
)
-
@
@)
0p
Uy—
O
O
g

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

3.1.5 Practical Closure Example

Consider this Gustav code demonstrating closure behavior:
fun make_counter() {
var count = 0;
return A() {
count =count+1;
return count;
b
}
var counter = make_counter();
print counter(); // 1
print counter(); // 2

The lambda captures the count variable from make counter's environment. Even after make
counter returns, the lambda retains access to count, demonstrating proper closure semantics.

3.2 Object-Oriented Programming Support

Gustav implements a complete object-oriented programming system with classes, inheritance,
method dispatch, and instance management. The implementation demonstrates how OOP
features can be layered onto a functional foundation.

3.2.1 Class Declaration and Instantiation
object.method(argument)

[object | | method |

Classes in Gustav are first-class objects that can be called to create instances:
@dataclass
class GusClass(GusCallable):

name: str

superclass: “GusClass | None”

methods: dict[str, GusFunction]

def call(self, interpreter: CanExecuteBlock, arguments: list[t.Any]) -> t.Any:
Create new instance
instance = GusClassinstance(self)

Call initializer if present
if self.initializer is not None:
self.initializer.bind(instance).call(interpreter, arguments)

return instance

@property
10| Page

&) webofjournals.com/index.php/12

Ee)
tl
N

"
fw

I

Research 'ﬁ

inary

|

ISsCip

Journal of Mult

wn
L
L
O
e
O
0p
®)
-
©
(7))
=
2
=
-
-CD
@)
0p
(T
@)
O
=

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

def initializer(self) -> GusFunction | None:
return self.find_method(“init”)

def arity(self) -> int:
return O if self.initializer is None else self.initializer.arity()

Instance Creation Process: Class instantiation follows a two-phase process: first creating an
empty instance, then invoking the initializer with the instance bound to this. This design
separates object allocation from initialization, enabling more sophisticated construction
patterns.

3.2.2 Method Resolution and Inheritance

Method resolution implements single inheritance with linear search up the inheritance chain:
def find_method(self, name: str) -> GusFunction | None:
Check current class methods
if name in self.methods:
return self.methods.get(name)

Recursively search superclasses
if self.superclass is not None:
return self.superclass.find_method(name)

return None

This implementation provides O(d) method lookup where d is the inheritance depth. While not
optimal for deep hierarchies, it maintains simplicity and matches the performance
characteristics of other tree-walk operations.

3.2.3 Instance Management and Field Access

Instance objects manage both fields and method access through a unified interface:
@dataclass
class GusClassInstance:

klass: GusClass

fields: dict[str, t.Any] = field(default_factory=dict)

def get(self, name: Token) -> GusFunction | t.Any:
Check instance fields first
if name.lexeme in self.fields:
return self.fields.get(name.lexeme)

Look for methods in class hierarchy

11|Page

&) webofjournals.com/index.php/12

C= =

"
fw

Research 'ﬁ

inary

iscipli

Journal of Mult

wn
L
L
O
e
O
0p
®)
-
©
(7))
=
2
=
-
-CD
@)
0p
(T
@)
O
=

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

I

method: GusFunction | None = self.klass.find_method(name.lexeme)
if method is not None:
return method.bind(self) # Bind method to this instance

raise GusRuntimeError(name, f"Undefined property '{name.lexeme}'")

def set(self, name: Token, value: t.Any) -> None:
self.fields[name.lexeme] = value

Method Binding Mechanism: When accessing a method, the instance returns a bound version
that has this pre-configured in its closure. This ensures that method calls have access to the
correct instance context.

3.2.4 Method Binding Implementation
Method binding creates a new function with this defined in its closure:

def bind(self, instance: t.Any) -> “GusFunction”:
Create new environment with this instance
environment: Environment = Environment(self.closure)
environment.define(“this”, instance)
return GusFunction(self.declaration, environment, self.is_initializer)

This binding occurs at property access time, not method definition time, enabling methods to
be shared across instances while maintaining per-instance context.

3.3 Enhanced Control Flow Implementation
Gustav extends basic control flow with loop-specific constructs and sophisticated
break/continue handling that maintains proper environment cleanup.

3.3.1 Exception-Based Control Transfer
Break and continue statements use CPython’s exception mechanism for non-local control

transfer:
class GusStoplteration(RuntimeError):

nnn

“""Used in break statement
pass

class GusContinuelteration(RuntimeError):

nnn

“""Used in continue statement
pass

This approach provides efficient control transfer while leveraging CPython's existing exception
handling infrastructure. The exceptions carry no data, serving purely as control signals.

3.3.2 Loop Environment Management

Loop statements create isolated environments to ensure proper variable scoping and cleanup:
def visit_for_statement(self, statement: S.For) -> None:
Create isolated loop environment

12|Page

&) webofjournals.com/index.php/12

Ee)
tl
N

e

"':IF

Research 'i

inary

iscipli

Journal of Mult

7))
(-
L
O
e
O
0p
©O
-
©
7p)
=
2
)
-
@
@)
0p
Uy—
O
O
g

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

loop_environment = Environment(self.environment)
previous_environment = self.environment
self.environment = loop_environment

try:
Initialize loop variable in loop scope
if statement.initializer:
self.execute(statement.initializer)

while self.is_truthy(self.evaluate(statement.condition)):
try:
self.execute(statement.body)
except GusStoplteration:
break # Clean break from loop
except GusContinuelteration:
Execute increment before continuing
if statement.increment:
self.evaluate(statement.increment.expression)
continue

Normal increment execution
if statement.increment:
self.evaluate(statement.increment.expression)

finally:
Always restore previous environment
self.environment = previous_environment

Environment Isolation: Each loop creates its own environment scope, ensuring that loop
variables don't leak into the enclosing scope while still allowing access to outer variables.

3.3.3 Loop Statement: desugaring into “while” statement
The loop statement demonstrates how complex constructs can be implemented through

desugaring:
def parse_loop_statement(self) -> S.While:

}/un ”

“”Desugar ‘loop { ... } into ‘while (true) {
condition = E.Literal(value=True)
body: S.Statement = self.parse_statement()

return S.While(condition, body=body)

This transformation occurs during parsing, eliminating the need for separate loop handling in
the interpreter. The approach demonstrates how syntactic convenience can be provided without
runtime complexity.

3.3.4 Nested Loop Break/Continue “guards”

The resolver ensures that break and continue statements only appear within loop contexts:
def visit_break_statement(self, statement: S.Break) -> None:

if not self.in_loop:

13|Page

&) webofjournals.com/index.php/12

Ee)
tr
N

"
fw

I

Research 'i

inary

|

ISsCip

Journal of Mult

wn
L
L
O
e
O
0p
®)
-
©
(7))
=
2
=
-
-CD
@)
0p
(T
@)
O
=

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

gustav.error(statement.keyword, “Can’t use ‘break’ outside of a loop”)

def visit_continue_statement(self, statement: S.Continue) -> None:
if not self.in_loop:
gustav.error(statement.keyword, “Can’t use ‘continue’ outside of a loop”)

The resolver tracks loop nesting through a boolean flag, providing early error detection for
misplaced control flow statements.

3.4 Built-in Function Integration

Gustav provides a clean interface for integrating built-in functions with the interpreter:
@t.runtime_checkable
class GusCallable(t.Protocol):

def arity(self) -> int: ...

def call(self, interpreter: CanExecuteBlock, arguments: list[t.Any]) -> t.Any: ...

Built-in functions implement this protocol, enabling seamless integration with user-defined

functions:
class Clock(GusCallable):
def arity(self) -> int:
return 0

def call(self, interpreter: CanExecuteBlock, arguments: list[str]) -> float:
return time.perf_counter()

def __repr__(self) -> str:
return "<native fn>"

This design allows built-in functions to access the interpreter context while maintaining type
safety and consistent calling conventions.

4. Performance Analysis and Results

4.1 Execution Characteristics

Performance analysis reveals typical tree-walk interpreter characteristics, with execution time
scaling linearly with program complexity. Benchmark testing using recursive algorithms
demonstrates approximately 15 times slower execution compared to native CPython
implementations, consistent with interpreted language performance expectations[12].

The resolver's variable resolution optimization provides measurable performance
improvements for variable-heavy programs by eliminating runtime scope traversal. Programs
with deep nesting benefit most from this optimization.

4.2 Memory Usage and Optimization

The interpreter maintains reasonable memory usage through careful AST node design and
environment management. Using CPython dataclasses with slots=True reduces per-instance
memory overhead, while the garbage collection of unused environments prevents memory
leaks during recursive execution.

14|Page

&) webofjournals.com/index.php/12

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

Ee)
H
N

e
),

]
i
I

4.3 Error Handling and Debugging Support
Gustav provides comprehensive error reporting across all compilation phases:
e Lexical errors: Unterminated strings, unexpected characters, invalid number formats

i

e Syntax errors: Missing tokens, malformed expressions, invalid statement structures

e Semantic errors: Undefined variables, invalid control flow, scope violations

e Runtime errors: Type mismatches, division by zero, undefined method calls
Each error category provides specific location information and suggested fixes, enhancing the
development experience.

5. Learning Outcomes

5.1 Implementation Challenges and Solutions

The most instructive challenge of the project involved AST node identity management during
variable resolution. This issue forced a closer look at the behavior of hash tables and the
semantics of key identity, particularly the difference between structural and referential equality.
It also highlighted subtle aspects of CPython’s dataclass implementation, where autogenerated
methods can inadvertently affect equality semantics. Debugging this challenge required
carefully designed techniques to expose correctness issues that were otherwise easy to
overlook, ultimately leading to a deeper understanding of low-level mechanics within the
implementation.

5.2 Language Design Trade-offs

Throughout the implementation of different language features, several fundamental design
trade-offs became apparent. Choosing dynamic typing over static typing simplified the initial
implementation effort, but it shifted complexity into runtime, where additional checking was
required to ensure correctness. Similarly, opting for tree-walk evaluation made the execution
model clearer and easier to extend, though it inevitably came at the cost of runtime performance
compared to a bytecode-based approach. Another key trade-off appeared between parse-time
and runtime transformations: while some syntactic sugar such as pipe operators benefited from
being resolved at parse-time for clarity and efficiency, other transformations were better
deferred until runtime to preserve flexibility.

5.3 Software Engineering Practices

Beyond technical challenges, the project underscored the importance of sound software
engineering practices. Type safety was reinforced through the use of comprehensive type
annotations, which not only documented intent but also helped catch design errors at an early
stage. Maintaining a high level of test coverage - 100% with more than one hundred test
scenarios - provided confidence in correctness and robustness. A modular design approach
ensured that components interacted through clear, well-defined interfaces, which in turn made
independent development and refactoring much more manageable. Finally, extensive inline
documentation proved invaluable, as it not only described how individual components worked

e
O
—
qo!
)
wn
@

oc
e
L
qo!

£

!
O

82

O

==
)

=

(T
O

=
-
(-
-
@)

S
0
(-

L
O

e
o

0p

®)
-
©
7p)
=

2

)
-

Q
@)

0p

Uy—
@)

O

=

15|Page

&) webofjournals.com/index.php/12

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

Ee)
H
N

"
fw

I

but also explained the reasoning behind design decisions, thus preserving the project’s long-
term maintainability.

i

6. Future Work

6.1 Bytecode Virtual Machine Implementation

The next planned development phase involves implementing a bytecode virtual machine
variant to achieve better performance characteristics:

Bytecode instruction set design

Stack-based evaluation architecture

Bytecode generation from AST

Optimized virtual machine implementation

Garbage collection

Static type inference

7. Conclusion

To highlight the educational aspects of hands-on language implementation for computer
science students, the Gustav interpreter project is one such example. Building from lexical
analysis through runtime execution of a complete interpreter-level project gives the learner a
great understanding of programming language concepts, along with software engineering
skills.

The implementation challenges faced in development greatly aided the learning process and
enriched the underlying understanding of complexity in software systems, as well as design
trade-offs. This project thus sits at the crossroads of theoretical computer science and practical
software construction, unlocking insights unattainable from coursework.

Future students can build upon this foundation in investigating compiler optimization
techniques, alternative evaluation strategies, and experimental language features.

References

1. Nystrom, R. (2021). Crafting Interpreters. Genever Benning. Available online at:
https://craftinginterpreters.com

2. Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles,
Techniques, and Tools (2nd ed.). Addison-Wesley.

3. Cooper, K. D., & Torczon, L. (2011). Engineering a Compiler (2nd ed.). Morgan
Kaufmann.

4. Appel, A. W. (2002). Modern Compiler Implementation in Java (2nd ed.). Cambridge
University Press.

5. Watt, D. A., & Brown, D. F. (2000). Programming Language Processors in Java. Prentice
Hall.

6. Grune, D., van Reeuwijk, K., Bal, H. E., Jacobs, C. J., & Langendoen, K. (2012). Modern
Compiler Design (2nd ed.). Springer.

Web of Scientists and Scholars: Journal of Multidisciplinary Research

&) webofjournals.com/index.php/12

https://craftinginterpreters.com/

C= =

"
fw

I

Journal of Multidisciplinary Research 'i

.
.

wn
L
L
O
e
O
0p
®)
-
©
(7))
=
2
=
-
.CIJ
@)
0p
(T
@)
O
=

Volume 3, Issue 9, September - 2025 ISSN (E): 2938-3811

7. Muchnick, S. S. (1997). Advanced Compiler Design and Implementation. Morgan
Kaufmann.

8. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley.

9. Sestoft, P. (2017). Programming Language Concepts (2nd ed.). Springer.

10. Krishnamurthi, S. (2012). Programming Languages: Application and Interpretation.
Brown University.

11. Bracha, G., & Ungar, D. (2004). Mirrors: design principles for meta-level facilities of
object-oriented programming languages. ACM SIGPLAN Notices, 39(10), 331-344.

12. Terusalimschy, R., De Figueiredo, L. H., & Celes, W. (2007). The evolution of Lua.
Proceedings of the third ACM SIGPLAN conference on History of programming
languages, 2-1.

13. Note: all illustrations in this paper are taken from https://craftinginterpreters.com.

Appendix
Gustav’s grammar specification using Wirth Syntax Notation which can also be viewed

interactively on https://matthijsgroen.github.io/ebnf2railroad/try-yourself.html:

program = { declaration }, "EOF" ;

declaration
= class_declaration
| fun_declaration
| var_declaration
| statement
class_declaration = "class" , IDENTIFIER ,
["<", IDENTIFIER], "{", { function }, "}";;
fun_declaration = "fun" , function ;
var_declaration = "var" , IDENTIFIER, ["=",
expression],";";

statement =
expr_statement | for_statement
| if_statement | print_statement

| return_statement | while_statement
| loop_statement | block
| break_statement | continue_statement

nn

expr_statement = expression, ;" ;
for_statement = "for", "(", (var_declaration | expr_statement | ";"),
[expression],";", [expression],")",
statement ;
if_statement = "if", "(", expression,")",
statement, ["else", statement] ;
print_statement = "print" , expression, ";" ;
return_statement = "return" , [expression],";" ;
while_statement = "while" , "(" , expression, ")",
statement ;

17|Page

&) webofjournals.com/index.php/12

https://craftinginterpreters.com/
https://en.wikipedia.org/wiki/Wirth_syntax_notation
https://matthijsgroen.github.io/ebnf2railroad/try-yourself.html

Ee)
tl
N

e

"':IF

Research 'i

inary

|

ISsCip

Journal of Mult

Web of Scientists and Scholars

Volume 3, Issue 9, September - 2025

ISSN (E): 2938-3811

loop_statement = "loop" , statement ;
block ="{", { declaration }, "}";
break_statement = "break" , ";" ;
continue_statement = "continue" , ";";
expression = assignment ;
assignment
=(call,".", IDENTIFIER, "=", assignment)
| logic_or
logic_or = logic_and, { "or", logic_and };
logic_and = equality, { "and" , equality };
equality = comparison, { ("!=" | "=="), comparison };

comparison = term, {(">" | ">=" | "<" | "<="), term };
term =factor, {("-" | "+" | "++" | "A"), factor };
factor =unary, {("/" | "*"), unary };

unary = ("I" | "-"), unary | call ;

call = primary, {
("(",[arguments],")"
| ".", IDENTIFIER
) AT, call};
primary
= "true" | "false"
| "nil" | "this"
| NUMBER | STRING
| IDENTIFIER | "(", expression, ")"
| "super",".", IDENTIFIER | lambda_expression
ternary = equality, ["?", assignment , ":",
assignment | ;
lambda_expression = ("lambda" | "A"), "(",
[parameters], ")", block;
function = IDENTIFIER, "(", [parameters], ")", block ;
parameters = IDENTIFIER, {",", IDENTIFIER };
arguments = expression, {"," , expression };
NUMBER = "number" ;
STRING = "string" ;
IDENTIFIER = "id" ;

&) webofjournals.com/index.php/12

