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Abstract 

The tree-walk interpreter Gustav, created as a thorough learning exercise for programming 

language implementation, is presented in this paper. The project expands the Lox language 

with more advanced features like lambda expressions, pipe operators, ternary expressions, and 

improved loop constructs, building on the fundamental ideas from Crafting Interpreters[1]. The 

implementation serves as a basic programming language and a teaching tool for compiler 

design concepts, showcasing the full interpreter pipeline from lexical analysis to runtime 

execution. This work offers insights into language design trade-offs, implementation 

difficulties, and the connection between language features and their underlying computational 

models by methodically analyzing each compilation phase. The interpreter maintains code 

clarity and extensibility while achieving 100% test coverage and exhibiting typical tree-walk 

performance characteristics. 
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Introduction 

 
One of the best learning opportunities in computer science education is the implementation of 

programming languages, which calls for the fusion of theoretical ideas with real-world software 

engineering. By filling the gap between abstract language features and their concrete execution 
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models, interpreters’ design and implementation offer direct insight into how high-level 

programming constructs translate into computational behavior [2]. 

Because of their conceptual clarity and clear alignment between source code structure and 

execution flow, tree-walk interpreters provide an excellent approach to language 

implementation [3]. Tree-walk interpreters evaluate abstract syntax trees directly, in contrast 

to bytecode virtual machines or native code compilers, so developers can see the connection 

between syntax and semantics immediately. 

This paper documents the development of Gustav, a dynamically-typed programming 

language interpreter implemented in CPython. The project began as an implementation of the 

Lox language specification from Crafting Interpreters but evolved to include several language 

extensions that provided additional learning opportunities and implementation challenges. The 

complete source code and documentation are available at 

https://github.com/AbduazizZiyodov/gustav. 

To demonstrate Gustav's capabilities, consider this binary search tree (BST algorithm) 

implementation showcasing minimal syntax of gustav, object-oriented programming, recursive 

algorithms, and functional composition: 
class Tree { 
    init(value) { this.value = value; this.left = this.right = nil; } 
    insert(value) { 
        if (value < this.value) { 
            this.left = this.left == nil ? Tree(value) :         
    this.left.insert(value); 
        } else { 
            this.right = this.right == nil ? Tree(value) :         
   this.right.insert(value); 
        } 
    } 
} 
 
fun binary_search(node, value) { 
    return node == nil ? false : node.value == value ? true : 
           value < node.value ? binary_search(node.left, value) : 
           binary_search(node.right, value); 
} 
 
var tree = Tree(10); 
 
tree.insert(5); tree.insert(15); tree.insert(3); tree.insert(7); 
 
print binary_search(tree, 7);   // true 
print binary_search(tree, 15);  // true 
print binary_search(tree, 12);  // false 

 

This example demonstrates Gustav's support for classes with constructors, method chaining, 

ternary operators, recursive function calls, and clean syntax that balances readability with 

expressiveness. 

 

 

 

https://github.com/AbduazizZiyodov/gustav
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1.1 Theoretical Background 

Programming language implementation typically follows a multi-phase architecture consisting 

of lexical analysis (scanning), syntactic analysis (parsing), semantic analysis, and code 

generation or interpretation[4]. Each phase transforms the program representation, 

progressively refining it from character sequences to executable operations. 

Lexical Analysis converts character streams into tokens, implementing finite automata to 

recognize language constructs. This phase handles keywords, operators, literals, and identifiers 

while managing whitespace and comments[5]. 

Syntactic Analysis constructs abstract syntax trees (ASTs) from token sequences using parsing 

algorithms such as recursive descent or shift-reduce techniques. The parser enforces 

grammatical rules and operator precedence while detecting syntax errors[6]. 

Semantic Analysis performs static analysis to detect semantic errors and optimize runtime 

performance. This phase typically includes type checking, variable resolution, and scope 

analysis[7]. 

Interpretation directly executes the AST using the Visitor pattern or similar traversal 

techniques, evaluating expressions and executing statements according to the language's 

operational semantics[8]. 

 

2. Implementation Architecture 

2.1 Overall Design 

Gustav follows the four-phase interpreter architecture established by Nystrom[1], with each 

component implementing a specific interface and maintaining clear separation of concerns. 

The implementation emphasizes type safety through comprehensive CPython type annotations 

and maintains 100% test coverage across all components. 

The interpreter pipeline processes source code through the following stages: 

1. Scanner (gustav/scanner.py) - Lexical analysis producing token streams 

2. Parser (gustav/parser.py) - Recursive descent parsing generating ASTs 

3. Resolver (gustav/resolver.py) - Static semantic analysis and variable resolution 

4. Interpreter (gustav/interpreter.py) - Tree-walk evaluation with runtime error handling 

 

2.2 Lexical Analysis Implementation 

 

 
 

The scanner implements character-by-character processing using a finite state machine 

approach. The core tokenization logic demonstrates how multi-character operators require 

lookahead processing: 
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def next_token(self) -> None: 
    char: str = self.move_current() 
    match char: 
        case "!": 
            self.add_token(type=(TT.BANG, TT.BANG_EQUAL)[self.match_token("=")]) 
        case "=": 
            self.add_token(type=(TT.EQUAL, TT.EQUAL_EQUAL)[self.match_token("=")]) 
        case "|": 
            if self.match_token(">"): 
                self.add_token(TT.PIPE) 
            else: 
                gustav.panic(self.line, "Unexpected character") 

 

This implementation pattern allows the scanner to recognize compound operators like !=, ==, 

and |> while maintaining linear time complexity. The token recognition uses CPython's 

structural pattern matching for clarity, though traditional conditional logic would achieve 

equivalent performance. 

 

Critical Implementation Detail:  

Token identity management required careful consideration of CPython's dataclass equality 

semantics. Initially, identical tokens from different AST locations were treated as equal due to 

structural equality, causing variable resolution conflicts. The solution involved disabling 

automatic equality generation: 

 
@dataclass(frozen=True, slots=True, eq=False) 
class Token: 
    type: TT 
    lexeme: str 
    literal: t.Any 
    line: int 

 

This ensures identity-based rather than structural equality, preventing resolution mapping 

collisions between syntactically identical but semantically distinct token instances. 

 

2.3 Recursive Descent Parsing 

 
 

The parser implements a recursive descent strategy with explicit precedence handling. Each 

grammar rule corresponds to a parsing method, maintaining clear correspondence between 

grammar specification and implementation: 
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def parse_expression(self) -> E.Expression: 
    assignment_expr = self.parse_assignment() 
     
    if self.match(TT.PIPE): 
        return self.parse_call(assignment_expr) 
     
    return assignment_expr 

 

Pipe Operator Implementation: The pipe operator (|>) demonstrates parse-time syntactic 

transformation. Rather than creating dedicated AST nodes, pipes are transformed into function 

calls during parsing: 

def finish_call( 
self,  
callee: E.Expression,  
pipe_arg: E.Expression | None = None 

) -> E.Call: 
    arguments: list[E.Expression] = [] 
     
    # Parse regular arguments 
    if not self.check(TT.RIGHT_PAREN): 
        arguments.append(self.parse_expression()) 
        while self.match(TT.COMMA): 
            arguments.append(self.parse_expression()) 
     
    # Append piped argument as final parameter 
    if pipe_arg: 
        arguments.append(pipe_arg)  # f(x) |> g(y) becomes g(y, f(x)) 
     
    paren = self.consume(TT.RIGHT_PAREN, "Expect ')' after arguments") 
    return E.Call(callee, paren, arguments) 

 

This transformation strategy eliminates runtime overhead while providing convenient syntax. 

The expression f(x)|>g(y) becomes g(y,f(x)) during parsing, requiring no special interpreter 

support. 

 

2.4 Semantic Analysis Through Variable Resolution 

 

 

The resolver performs single-pass static analysis to optimize variable access and detect scope-

related errors. Variable resolution maps each variable reference to its declaration scope, 

enabling constant-time variable lookup during interpretation: 
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def resolve_local( 
self,  
expression: E.Expression,  
name: Token,  
mark_as_used: bool 

) -> None: 
    for i in range(len(self.scopes) - 1, -1, -1): 
        if name.lexeme not in self.scopes[i]: 
            continue 
         
        depth = len(self.scopes) - 1 - i 
        self.interpreter.resolve(expression, depth) 
         
        if mark_as_used: 
            self.scopes[i][name.lexeme] = (name, VariableState.USED) 
         
        return 

 

The resolver maintains a scope stack during AST traversal, computing the lexical distance 

between variable references and their declarations. This analysis eliminates the need for 

runtime scope chain traversal, improving interpreter performance while enabling early error 

detection. 

 

2.4.1 Variable State Tracking 

Gustav implements variable state management to catch common programming errors: 
class VariableState(StrEnum): 
    USED = auto() 
    DECLARED = auto()   
    DEFINED = auto() 

 

Variables progress through three states: DECLARED (name reserved), DEFINED (initialized), 

and USED (referenced). This enables detection of several error categories: 

 

Uninitialized Variable Access: Variables declared but not initialized cannot be used: 
def visit_variable_expression(self, expression: E.Variable) -> None: 

    if (self.has_active_scope()  

        and expression.name.lexeme in self.peek() 

        and (scope_value := self.peek().get(expression.name.lexeme)) is not None 

        and scope_value[1] == VariableState.DECLARED): 

        gustav.error(expression.name, 

                    "Can't read local variables in its own initializer"): ... 

This prevents accessing variables within their own initialization expressions. 

 

Unused Variable Warnings:  

The resolver tracks variable usage and warns about unused declarations: 
def end_scope(self) -> None: 

    scope = self.scopes.pop() 

     

    for _, value in scope.items(): 

        name, status = value 
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        if status == VariableState.DEFINED: 

            gustav.warning(name, f”Variable ‘{name.lexeme}’ is not used”) 

 

This analysis helps identify potential bugs and encourages cleaner code by flagging 

unnecessary variable declarations. 

 

Runtime Uninitialized Detection:  

The interpreter prevents access to uninitialized variables: 
def visit_variable_expression(self, expression: E.Variable) -> t.Any: 

    value = self.look_up_variable(expression.name, expression) 

     

    if value is UNINITIALIZED: 

        raise GusRuntimeError(expression.name, 

                   f”Can’t use uninitialized variable’{expression.name.lexeme}’”) 

     

    return value 

 

Where UNINITIALIZED is a sentinel value distinguishing declared but uninitialized variables 

from undefined ones. 

2.5 AST Design and Tree-Walk Evaluation 

 
Gustav implements AST nodes using CPython dataclasses with the Visitor pattern for 

evaluation. This design provides type safety while maintaining extensibility: 
@dataclass(frozen=True, slots=True, eq=False) 
class Binary(Expression): 
    left: Expression 
    operator: Token 
    right: Expression 
     
    def accept[T](self, visitor: "ExpressionVisitor[T]") -> T: 
        return visitor.visit_binary_expression(self) 

 

Expression Evaluation:  

The interpreter implements expression evaluation through visitor methods, handling type 

coercion and runtime error detection: 
def visit_binary_expression(self, expression: E.Binary) -> t.Any: 

    left = self.evaluate(expression.left) 

    right = self.evaluate(expression.right) 

     

    if expression.operator.type in Interpreter.NUMERIC_OPERATORS: 

        self.check_number_operands(expression.operator, left, right) 
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        match expression.operator.type: 

        case TT.PLUS: 

            if any(isinstance(left, T) and isinstance(right, T)  

                   for T in (str, int, float)): 

                return left + right 

            raise GusRuntimeError(expression.operator, 

                                "Operands must be two numbers or two strings") 

        case TT.STAR: 

            return left * right 

        case TT.SLASH: 

            return float("nan") if right == 0 else left / right 

This implementation demonstrates runtime type checking for dynamic languages and the 

handling of edge cases like division by zero. 

 

3. Advanced Feature Implementation 

3.1 Lambda Expressions and Closures 

Lambda expressions in Gustav provide first-class function capabilities with complete closure 

support, implementing lexical scoping semantics that capture variable bindings at declaration 

time rather than execution time. 

 

3.1.1 Theoretical Foundation of Closures 

A closure consists of a function definition paired with the lexical environment in which it was 

defined[13]. This environment must persist beyond the original scope's lifetime, requiring 

careful memory management and variable capture strategies. The implementation must address 

several critical challenges: 

1. Variable Capture: Which variables from the enclosing scope should be captured ? 

2. Lifetime Management: How long should captured variables remain accessible ? 

3. Scoping Rules: How do captured variables interact with parameters and local 

variables ? 

 

3.1.2 Lambda AST Representation 

Gustav represents lambda expressions as AST nodes containing parameter lists and statement 

bodies, similar to regular functions but without named identifiers: 
@dataclass(frozen=True, slots=True, eq=False) 

class Lambda(Expression): 

    params: list[Token] 

    body: list[Statement] 

     

    def accept[T](self, visitor: “ExpressionVisitor[T]”) -> T: 

        return visitor.visit_lambda_expression(self) 

 

This representation allows lambdas to be treated as expressions, enabling their use in contexts 

where regular function declarations would be syntactically invalid. 
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3.1.3 Closure Capture Implementation 

The lambda evaluation process creates a GusLambda callable that captures the current 

environment: 
@dataclass(slots=True, frozen=True, eq=False) 

class GusLambda(GusCallable): 

    declaration: E.Lambda 

    closure: Environment  # Captured at declaration time 

     

    def call(self, interpreter: CanExecuteBlock, arguments: list[t.Any]) -> t.Any: 

        # Create new environment with closure as parent 

        environment: Environment = Environment(self.closure) 

         

        # Bind parameters to arguments 

        for I in range(self.arity()): 

            environment.define(self.declaration.params[i].lexeme, arguments[i]) 

         

        try: 

            interpreter.execute_block(self.declaration.body, environment) 

        except GusReturn as exc: 

            return exc.value 

         

        return None 

     

    def arity(self) -> int: 

        return len(self.declaration.params) 

 

Critical Design Decision:  

The closure field captures a reference to the entire environment chain at declaration time. This 

ensures that all accessible variables remain available during lambda execution, regardless of 

when or where the lambda is called. 

 

3.1.4 Environment Chain Management 

The Environment class implements lexical scoping through a linked chain of variable bindings: 
class Environment: 

    def __init__(self, enclosing: “Environment | None” = None) -> None: 

        self.values: dict[str, t.Any] = dict() 

        self.enclosing: “Environment | None” = enclosing 

     

    def get(self, name: Token) -> t.Any | t.NoReturn: 

        if name.lexeme in self.values: 

            return self.values.get(name.lexeme) 

         

        if self.enclosing is not None: 

            return self.enclosing.get(name) 

         

        raise GusRuntimeError(name, f”Undefined variable ‘{name.lexeme}’”) 

 

When a lambda captures its environment, it maintains a reference to the entire chain, preserving 

access to variables from all enclosing scopes. 
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3.1.5 Practical Closure Example 

Consider this Gustav code demonstrating closure behavior: 
fun make_counter() { 

    var count = 0; 

    return λ() {  

        count = count + 1;  

        return count;  

    }; 

} 

var counter = make_counter(); 

print counter(); // 1 

print counter(); // 2 

 

The lambda captures the count variable from make_counter's environment. Even after make 

counter returns, the lambda retains access to count, demonstrating proper closure semantics. 

 

3.2 Object-Oriented Programming Support 

Gustav implements a complete object-oriented programming system with classes, inheritance, 

method dispatch, and instance management. The implementation demonstrates how OOP 

features can be layered onto a functional foundation. 

 

3.2.1 Class Declaration and Instantiation 

 

 

Classes in Gustav are first-class objects that can be called to create instances: 
@dataclass 

class GusClass(GusCallable): 

    name: str 

    superclass: “GusClass | None” 

    methods: dict[str, GusFunction] 

     

    def call(self, interpreter: CanExecuteBlock, arguments: list[t.Any]) -> t.Any: 

        # Create new instance 

        instance = GusClassInstance(self) 

         

        # Call initializer if present 

        if self.initializer is not None: 

            self.initializer.bind(instance).call(interpreter, arguments) 

         

        return instance 

     

    @property 
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    def initializer(self) -> GusFunction | None: 

        return self.find_method(“init”) 

     

    def arity(self) -> int: 

        return 0 if self.initializer is None else self.initializer.arity() 

 

Instance Creation Process: Class instantiation follows a two-phase process: first creating an 

empty instance, then invoking the initializer with the instance bound to this. This design 

separates object allocation from initialization, enabling more sophisticated construction 

patterns. 

 

3.2.2 Method Resolution and Inheritance 

 

 

Method resolution implements single inheritance with linear search up the inheritance chain: 
def find_method(self, name: str) -> GusFunction | None: 

    # Check current class methods 

    if name in self.methods: 

        return self.methods.get(name) 

     

    # Recursively search superclasses 

    if self.superclass is not None: 

        return self.superclass.find_method(name) 

     

    return None 

 

This implementation provides O(d) method lookup where d is the inheritance depth. While not 

optimal for deep hierarchies, it maintains simplicity and matches the performance 

characteristics of other tree-walk operations. 

 

3.2.3 Instance Management and Field Access 

Instance objects manage both fields and method access through a unified interface: 
@dataclass 

class GusClassInstance: 

    klass: GusClass 

    fields: dict[str, t.Any] = field(default_factory=dict) 

     

    def get(self, name: Token) -> GusFunction | t.Any: 

        # Check instance fields first 

        if name.lexeme in self.fields: 

            return self.fields.get(name.lexeme) 

         

        # Look for methods in class hierarchy 
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        method: GusFunction | None = self.klass.find_method(name.lexeme) 

        if method is not None: 

            return method.bind(self)  # Bind method to this instance 

         

        raise GusRuntimeError(name, f"Undefined property '{name.lexeme}'") 

     

    def set(self, name: Token, value: t.Any) -> None: 

        self.fields[name.lexeme] = value 

 

Method Binding Mechanism: When accessing a method, the instance returns a bound version 

that has this pre-configured in its closure. This ensures that method calls have access to the 

correct instance context. 

 

3.2.4 Method Binding Implementation 

Method binding creates a new function with this defined in its closure: 

def bind(self, instance: t.Any) -> “GusFunction”: 

    # Create new environment with this instance 

    environment: Environment = Environment(self.closure) 

    environment.define(“this”, instance) 

    return GusFunction(self.declaration, environment, self.is_initializer) 

 

This binding occurs at property access time, not method definition time, enabling methods to 

be shared across instances while maintaining per-instance context. 

 

3.3 Enhanced Control Flow Implementation 

Gustav extends basic control flow with loop-specific constructs and sophisticated 

break/continue handling that maintains proper environment cleanup. 

 

3.3.1 Exception-Based Control Transfer 

Break and continue statements use CPython’s exception mechanism for non-local control 

transfer: 
class GusStopIteration(RuntimeError): 

    “””Used in break statement””” 

    pass 

 

class GusContinueIteration(RuntimeError): 

    “””Used in continue statement””” 

    pass 

 

This approach provides efficient control transfer while leveraging CPython's existing exception 

handling infrastructure. The exceptions carry no data, serving purely as control signals. 

 

3.3.2 Loop Environment Management 

Loop statements create isolated environments to ensure proper variable scoping and cleanup: 
def visit_for_statement(self, statement: S.For) -> None: 

    # Create isolated loop environment 
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    loop_environment = Environment(self.environment) 

    previous_environment = self.environment 

    self.environment = loop_environment 

     

    try: 

        # Initialize loop variable in loop scope 

        if statement.initializer: 

            self.execute(statement.initializer) 

         

        while self.is_truthy(self.evaluate(statement.condition)): 

            try: 

                self.execute(statement.body) 

            except GusStopIteration: 

                break  # Clean break from loop 

            except GusContinueIteration: 

                # Execute increment before continuing 

                if statement.increment: 

                    self.evaluate(statement.increment.expression) 

                continue 

             

            # Normal increment execution 

            if statement.increment: 

                self.evaluate(statement.increment.expression) 

     

    finally: 

        # Always restore previous environment 

        self.environment = previous_environment 

 

Environment Isolation: Each loop creates its own environment scope, ensuring that loop 

variables don't leak into the enclosing scope while still allowing access to outer variables. 

 

3.3.3 Loop Statement: desugaring into “while” statement 

The loop statement demonstrates how complex constructs can be implemented through 

desugaring: 
def parse_loop_statement(self) -> S.While: 

    “””Desugar ‘loop { … }’ into ‘while (true) { … }’””” 

    condition = E.Literal(value=True) 

    body: S.Statement = self.parse_statement() 

     

    return S.While(condition, body=body) 

 

This transformation occurs during parsing, eliminating the need for separate loop handling in 

the interpreter. The approach demonstrates how syntactic convenience can be provided without 

runtime complexity. 

 

3.3.4 Nested Loop Break/Continue “guards” 

The resolver ensures that break and continue statements only appear within loop contexts: 
def visit_break_statement(self, statement: S.Break) -> None: 

    if not self.in_loop: 
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        gustav.error(statement.keyword, “Can’t use ‘break’ outside of a loop”) 

 

def visit_continue_statement(self, statement: S.Continue) -> None: 

    if not self.in_loop: 

        gustav.error(statement.keyword, “Can’t use ‘continue’ outside of a loop”) 

 

The resolver tracks loop nesting through a boolean flag, providing early error detection for 

misplaced control flow statements. 

 

3.4 Built-in Function Integration 

Gustav provides a clean interface for integrating built-in functions with the interpreter: 
@t.runtime_checkable 

class GusCallable(t.Protocol): 

    def arity(self) -> int: ... 

    def call(self, interpreter: CanExecuteBlock, arguments: list[t.Any]) -> t.Any: ... 

 

Built-in functions implement this protocol, enabling seamless integration with user-defined 

functions: 
class Clock(GusCallable): 

    def arity(self) -> int: 

        return 0 

     

    def call(self, interpreter: CanExecuteBlock, arguments: list[str]) -> float: 

        return time.perf_counter() 

     

    def __repr__(self) -> str: 

        return "<native fn>" 

This design allows built-in functions to access the interpreter context while maintaining type 

safety and consistent calling conventions. 

 

4. Performance Analysis and Results 

4.1 Execution Characteristics 

Performance analysis reveals typical tree-walk interpreter characteristics, with execution time 

scaling linearly with program complexity. Benchmark testing using recursive algorithms 

demonstrates approximately 15 times slower execution compared to native CPython 

implementations, consistent with interpreted language performance expectations[12]. 

The resolver's variable resolution optimization provides measurable performance 

improvements for variable-heavy programs by eliminating runtime scope traversal. Programs 

with deep nesting benefit most from this optimization. 

 

4.2 Memory Usage and Optimization 

The interpreter maintains reasonable memory usage through careful AST node design and 

environment management. Using CPython dataclasses with slots=True reduces per-instance 

memory overhead, while the garbage collection of unused environments prevents memory 

leaks during recursive execution. 
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4.3 Error Handling and Debugging Support 

Gustav provides comprehensive error reporting across all compilation phases: 

● Lexical errors: Unterminated strings, unexpected characters, invalid number formats 

● Syntax errors: Missing tokens, malformed expressions, invalid statement structures 

● Semantic errors: Undefined variables, invalid control flow, scope violations 

● Runtime errors: Type mismatches, division by zero, undefined method calls 

Each error category provides specific location information and suggested fixes, enhancing the 

development experience. 

 

5. Learning Outcomes 

5.1 Implementation Challenges and Solutions 

The most instructive challenge of the project involved AST node identity management during 

variable resolution. This issue forced a closer look at the behavior of hash tables and the 

semantics of key identity, particularly the difference between structural and referential equality. 

It also highlighted subtle aspects of CPython’s dataclass implementation, where autogenerated 

methods can inadvertently affect equality semantics. Debugging this challenge required 

carefully designed techniques to expose correctness issues that were otherwise easy to 

overlook, ultimately leading to a deeper understanding of low-level mechanics within the 

implementation. 

 

5.2 Language Design Trade-offs 

Throughout the implementation of different language features, several fundamental design 

trade-offs became apparent. Choosing dynamic typing over static typing simplified the initial 

implementation effort, but it shifted complexity into runtime, where additional checking was 

required to ensure correctness. Similarly, opting for tree-walk evaluation made the execution 

model clearer and easier to extend, though it inevitably came at the cost of runtime performance 

compared to a bytecode-based approach. Another key trade-off appeared between parse-time 

and runtime transformations: while some syntactic sugar such as pipe operators benefited from 

being resolved at parse-time for clarity and efficiency, other transformations were better 

deferred until runtime to preserve flexibility. 

 

5.3 Software Engineering Practices 

Beyond technical challenges, the project underscored the importance of sound software 

engineering practices. Type safety was reinforced through the use of comprehensive type 

annotations, which not only documented intent but also helped catch design errors at an early 

stage. Maintaining a high level of test coverage - 100% with more than one hundred test 

scenarios - provided confidence in correctness and robustness. A modular design approach 

ensured that components interacted through clear, well-defined interfaces, which in turn made 

independent development and refactoring much more manageable. Finally, extensive inline 

documentation proved invaluable, as it not only described how individual components worked 
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but also explained the reasoning behind design decisions, thus preserving the project’s long-

term maintainability. 

 

6. Future Work 

6.1 Bytecode Virtual Machine Implementation 

The next planned development phase involves implementing a bytecode virtual machine 

variant to achieve better performance characteristics: 

● Bytecode instruction set design 

● Stack-based evaluation architecture 

● Bytecode generation from AST 

● Optimized virtual machine implementation 

● Garbage collection 

● Static type inference 

 

7. Conclusion 

To highlight the educational aspects of hands-on language implementation for computer 

science students, the Gustav interpreter project is one such example. Building from lexical 

analysis through runtime execution of a complete interpreter-level project gives the learner a 

great understanding of programming language concepts, along with software engineering 

skills. 

The implementation challenges faced in development greatly aided the learning process and 

enriched the underlying understanding of complexity in software systems, as well as design 

trade-offs. This project thus sits at the crossroads of theoretical computer science and practical 

software construction, unlocking insights unattainable from coursework. 

Future students can build upon this foundation in investigating compiler optimization 

techniques, alternative evaluation strategies, and experimental language features.  
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Appendix 

Gustav’s grammar specification using Wirth Syntax Notation which can also be viewed 

interactively on https://matthijsgroen.github.io/ebnf2railroad/try-yourself.html: 

 

program = { declaration } , "EOF" ; 
 
declaration 
  = class_declaration 
  | fun_declaration 
  | var_declaration 
  | statement 
  ; 
class_declaration = "class" , IDENTIFIER , 
  [ "<" , IDENTIFIER ] , "{" , { function } , "}" ; 
fun_declaration = "fun" , function ; 
var_declaration = "var" , IDENTIFIER , [ "=" , 
  expression ] , ";" ; 
statement =  
    expr_statement   | for_statement 
  | if_statement   | print_statement 
  | return_statement | while_statement 
  | loop_statement   | block 
  | break_statement  | continue_statement 
  ; 
 
expr_statement = expression , ";" ; 
for_statement = "for" , "(" , ( var_declaration | expr_statement | ";" ) , 
  [ expression ] , ";" , [ expression ] , ")" , 
  statement ; 
if_statement = "if" , "(" , expression , ")" , 
  statement , [ "else" , statement ] ; 
print_statement = "print" , expression , ";" ; 
return_statement = "return" , [ expression ] , ";" ; 
while_statement = "while" , "(" , expression , ")" , 
  statement ; 

https://craftinginterpreters.com/
https://en.wikipedia.org/wiki/Wirth_syntax_notation
https://matthijsgroen.github.io/ebnf2railroad/try-yourself.html
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loop_statement = "loop" , statement ; 
block = "{" , { declaration } , "}" ; 
break_statement = "break" , ";" ; 
continue_statement = "continue" , ";" ; 
expression = assignment ; 
assignment 
  = ( call , "." , IDENTIFIER , "=" , assignment ) 
  | logic_or 
  ; 
logic_or = logic_and , { "or" , logic_and } ; 
logic_and = equality , { "and" , equality } ; 
equality = comparison , { ( "!=" | "==" ) , comparison } ; 
comparison = term , { ( ">" | ">=" | "<" | "<=" ) , term } ; 
term = factor , { ( "-" | "+" | "++" | "^" ) , factor } ; 
factor = unary , { ( "/" | "*" ) , unary } ; 
unary = ( "!" | "-" ) , unary | call ; 
call = primary , { 
  ( "(" , [ arguments ] , ")" 
  | "." , IDENTIFIER 
  ) } , { "|>" , call } ; 
primary 
  = "true"                  | "false" 
  | "nil"                   | "this" 
  | NUMBER                  | STRING 
  | IDENTIFIER              | "(" , expression , ")" 
  | "super" , "." , IDENTIFIER | lambda_expression 
  ; 
ternary = equality , [ "?" , assignment , ":" , 
  assignment ] ; 
lambda_expression = ( "lambda" | "λ" ) , "(" , 
  [ parameters ] , ")" , block ; 
function = IDENTIFIER , "(" , [ parameters ] , ")" , block ; 
parameters = IDENTIFIER , { "," , IDENTIFIER } ; 
arguments = expression , { "," , expression } ; 
NUMBER = "number" ; 
STRING = "string" ; 
IDENTIFIER = "id" ; 

 


