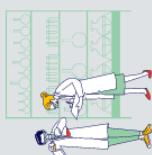


THE ORIGIN AND SPREAD OF ALKALINE CONDITIONS

Tadjieva Khosiyat Sultanovna
Tashkent State Medical University
hosiaattadzieva@gmail.com

Abstract

Fungi are known as a major group of decomposers, possessing extensive physiological plasticity and high adaptive potential to various abiotic factors. Most cultivated species prefer acidic conditions for growth and development. While alkaliphilic and alkaline have been studied extensively, the study of fungi tolerant to high pH values is relatively recent. A number of Russian studies of micromycetes in soda lakes and salt marshes have made a significant contribution to this topic. The authors developed a comprehensive method for isolating and identifying the functional components of alkaline habitat communities, demonstrating for the first time the phenomenon of obligate alkaliphilia in fungi. This large-scale study raised new questions about the diversity, distribution, and role of alkaliphilic and alkalitolerant fungi in both consistently alkaline habitats (only a small fraction of which have been studied) and in habitats (saline and nonsaline) where alkalization can occur locally. The question of how alkalitolerant fungi adapt to high pH values also remains relevant. Such data are fragmentary in the literature, with all studies conducted on alkalitolerants, not alkaliphiles. There is no information on the role of changes in the composition of soluble cytosolic carbohydrates and membrane lipids in adaptation to external pH, although these adaptation mechanisms are known to be among the most important under the influence of many other stress factors.


Introduction

The aim of this study was to investigate the diversity, ecophysiological characteristics, and adaptation mechanisms of alkaliphilic and alkalitolerant fungi isolated from soils with different pH values and different types of salinity.

To achieve this goal, the following tasks were set: to isolate alkali-tolerant fungi from the stable alkaline soils of the soda lake; neutral hypersaline soils of the lake; acidic sod-podzolic and neutral cultivated soils; and to study the taxonomic diversity and conduct a phylogenetic analysis of the isolated fungi; and to study the dynamics of membrane and storage lipids of alkaliphilic and alkalitolerant fungi in response to changes in external pH.

Research Results

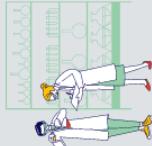
Alkaline conditions with consistently high pH values occur in natural habitats such as soda lakes and soda solonchaks, where alkalization typically occurs through the accumulation of sodium carbonate and bicarbonate as a result of carbon dioxide weathering of calcium- and magnesium-poor rocks. The development of soda salinization in lakes is facilitated by the lack

of surface runoff and poor drainage, while evaporitic processes summarize the effects of carbon dioxide weathering for the catchment area. Complex and diverse processes can also lead to soil alkalization. These are predominantly soda-salinated soils, including soda, soda-chloride, soda-sulfate, and soils containing soda. Soda salinization is most typical of arid zones in the forest-steppe belt, semi-deserts, and savannas, although it is found elsewhere. Regarding the global distribution of soda salinization, examples of soda lakes and solonchaks are known in North, Central, and South America, Europe, Asia (Siberia, Mongolia, Tibet), throughout Africa, and Australia. The water-salt regime of alkaline soils and soda solonchaks is highly dependent on precipitation and drainage (this is especially true for soils). Soda lakes exhibit less dramatic changes in water mineralization with changing atmospheric conditions. These are the most stable of the highly alkaline habitats, where pH values above 11.5 can be maintained.

In terms of hydrochemical processes, increased alkalinity is typically accompanied by the removal of calcium as a macronutrient. Sodium becomes the dominant cation, while carbonate/bicarbonate and chloride ions become the dominant anions. As a result of a shift in the $\text{CO}_2/\text{HCO}_3^-/\text{CO}_3^{2-}/\text{OH}^-$ ratio, depending on the mineralization, these anions create a more or less powerful alkaline buffer system (with a pH of up to 12). Unstable local alkaline conditions can arise everywhere as a result of microbial activity through ammonification, sulfate reduction, and photosynthesis. This fact should undoubtedly facilitate the widespread distribution of species adapted to high pH values. Human activity also makes a significant contribution to the creation of alkaline conditions: the operation of cement factories, paper and pulp mills, mining, the discharge of various wastes, and agricultural activities (especially the application of certain fertilizers to the soil) are accompanied by local alkalization of the environment, down to pH 11. In addition to the studies listed above, the transcription factor PacC, which is involved in signal transduction when the external pH changes, has been studied in *S. alkalinus*, and its conservatism has been demonstrated. Double-stranded RNA mycoviruses have been detected in several isolates of the fungus. *S. alkalinus* has proven to be an extremely promising model object for studying the phenomenon of obligate alkaliphilia in fungi. Mechanisms of fungal adaptation to external pH. History of the study of the mechanisms of fungal adaptation to external pH. All known studies concerning the mechanisms of fungal adaptation to alkaline pH values have been conducted on neutrophilic species such as *Aspergillus niger*.

Representatives of group 3 are characterized primarily by the fact that in most cases they form limited localized foci of infection in the above-ground parts of the plant, spread horizontally, and are distinguished by high biodiversity within specific host tissues and individual plants. This is especially pronounced among inhabitants of tropical and subtropical regions. This group includes representatives of most orders of ascomycetes and basidiomycetes. Group 4 includes the so-called dark septate fungi. endophytes (TC - endophytes, DSE - Dark Septate Endophytes (Table 1), whose presence in the rhizosphere and roots of various plants has been noted by many scientists studying mycorrhizas. TC endophytes colonize plant roots, developing intracellularly and without forming structures characteristic of mycorrhizal fungi. Their name derives from their dark coloration and the presence of a melanized septum. Taxonomically, this

group is quite diverse: they do not exhibit specificity to specific hosts or habitats and are found everywhere from the Arctic to Antarctica. TC endophytes are believed to spread horizontally; dissemination by mycelial fragmentation and conidia has been demonstrated in laboratory conditions. The ecological role of this group remains poorly understood, but it has been shown that in many cases, the presence of an endosymbiont has a positive effect on the host plant, helping it survive abiotic stress, such as drought or soil contamination with heavy metals. Endophyte groups described, researchers propose classifying a number of entomopathogenic fungi as a separate group. Their life cycle may include a fairly long stage of asymptomatic endophytic growth preceding the development of infection in insects. Such fungi may potentially serve as potential biocontrol agents. Active research into such associations in recent years has resulted in thousands of articles. However, endophytic fungi remain poorly understood, despite their crucial role in the formation, stabilization, and evolution of plant communities and other organisms associated with them. This is due to the influence of numerous factors, including their hidden lifestyle, difficulties in detecting, isolating, cultivating, and identifying endophytes, and the individual reactions of different community members to each other. Taxonomic position of endophytes of cereals: clavicipitales Endophytic fungi are a group that includes symbionts of grasses and some sedges, engaging in various types of interactions with their host plants, ranging from fully mutualistic to pathogenic. They form a monophyletic group that includes members of the Clavicipitaceae family, although the question of monophyletic status is still debated.


Conclusions. Thus, in the Clavicipitaceae family, four tribes are usually distinguished (Cordycipeae, Clavicipipeae, Balansieae, Ustilaginoideae), three of which infect only grasses and sedges, and the fourth, Cordycipeae (genus *Cordyceps*), is a pathogen of insects, some other invertebrates or fungi (Kuldau et al., 1997, cited in: Clay, Schardl, 2002). The tribe Ustilaginoideae includes three anamorphic genera that infect grasses in South and Central America, as well as in other tropical regions, producing conidial sporulation similar to the ustospores of *Ustilago* spp. (Bischoff et al., 2004). The tribe Clavicipipeae are known causative agents of diseases collectively known as "ergots." They parasitize a wide range of grasses, where they form sclerotia, infecting single flowers of cereals and producing alkaloids. The most diverse representatives of the tribe Balansieae are those that include seven genera that cause systemic infections of cereals and sedges and are also capable of synthesizing alkaloids. This group includes endophytes that form associations with grasses, primarily from the subfamily Pooideae, which are the subject of study in this work.

References

1. J. Stenhou. Ueber Larixinsäure, einen krystallisirbaren flüchtigen Bestandtheil der Rinde des Lerchenbaums (*Pinus Larix L.*). // Annalen der Chemie und Pharmacie. 1862. V. 123. N 47 48. P. 191-199.
2. J. Brand. Ueber Maltol. //Berichte der Deutschen Chemischen Gesellschaft. 1894. V. 27(1). P. 806-810.

3. Abduraimovna, A.D., Turg'unboyevna, Y.N. and Rustamovna, Q.S., 2023. QIZLARNI OILA VA JAMIYATDA O 'ZO 'RNINI TOPISHDA PSIXOLOGIK KO 'NIKMA VA MA'NAVIY YETUKLIKNI SHAKLLANTIRISH. *Scientific Impulse*, 1(7), pp.310-313.
4. Abduraimovna, A.D., Turg'unboyevna, Y.N. and Rustamovna, Q.S., 2023. QIZLARNI OILA VA JAMIYATDA O 'ZO 'RNINI TOPISHDA PSIXOLOGIK KO 'NIKMA VA MA'NAVIY YETUKLIKNI SHAKLLANTIRISH. *Scientific Impulse*, 1(7), pp.310-313.
5. ERMATOV, N., KASSYMOVA, G., TAJIYEVA, K., KHASANOVA, M., ALIMUKHAMEDOVA, M., & AZIMOVA, S. (2020). Expression of tissue-specific genes in mice with hepatocarcinogenesis. *International Journal of Pharmaceutical Research (09752366)*, 12(3).
6. Inakov, S. A., Mamatkulov, B. B., Kosimova, K., Saidalikhujaeva, S., & Shoyusupova, K. B. (2020). Social and demographic characteristics of elderly and their lifestyle in developing countries: on the example of Uzbekistan. *Indian Journal of Forensic Medicine & Toxicology*, 14(4), 7418-7425.
7. Kamilova DN, Saydalikhujaeva SK, Abdashimov ZB, Rakhmatullaeva DM, Tadjieva XS. Employment relations and responsibilities of medical institutions workers in a pandemic in Uzbekistan. *Journal of Medicine and Innovations*. 2021;2(13-1).
8. Kamilova, D. N., Saydalikhujaeva, S. K., Rakhmatullaeva, D. M., Makhmudova, M. K., & Tadjieva, K. S. (2021). Professional image of a teacher and a doctor. *British Medical Journal*, 1(4), 4-14.
9. Kasimova, K. T. (2024). The Role Of Ecology In The Development Of Cardiovascular Diseases.
10. Khilola, T. K. (2024). Assessment of environmental conditions in tashkent and relationship with the population suffering from cardiovascular diseases.
11. Khudoyberganov, M., Rakhmatkarieva, F., Abdurakhmonov, E., Tojiboeva, I., & Tadjieva, K. (2022, June). Thermodynamics of water adsorption on local kaolin modified microporous sorbents. In *American Institute of Physics Conference Series* (Vol. 2432, No. 1, p. 050001).
12. Kosimova, K. T., Jalolov, N. N., & Ikramova, N. A. (2025, April). THE RELATIONSHIP BETWEEN AIR POLLUTION AND ARTERIAL HYPERTENSION. International Conference on Advance Research in Humanities, Applied Sciences and Education.
13. Qosimova, X. T., Ikramova, N. A., Juraboyeva, D. N., & Mukhtorova, D. A. (2025, March). THE ADVERSE EFFECTS OF SMARTPHONES ON COGNITIVE ACTIVITY IN THE EDUCATIONAL PROCESS AND WAYS TO MITIGATE THEM. In The Conference Hub (pp. 76-79).
14. Sadullayeva, X. A., Salomova, F. I., & Sultonov, E. Y. (2023). Ochiq suv havzalari muhofazalash ob'ekti sifatida. In *V международная научно-практическая конференция «Современные достижения и перспективы развития охраны здоровья населения*.
15. Sadullayeva, X. A., Salomova, F. I., & Sultonov, E. Y. (2023). Ochiq suv havzalari muhofazalash ob'ekti sifatida. In *V международная научно-практическая*

конференция «Современные достижения и перспективы развития охраны здоровья населения.

16. Sadullayeva, X. A., Salomova, F. I., Mirsagatova, M. R., & Kobiljonova Sh, R. (2023). Problems of Pollution of Reservoirs in the Conditions of Uzbekistan.
17. Sadullayeva, X. A., Salomova, F. I., Mirsagatova, M. R., & Kobiljonova Sh, R. (2023). Problems of Pollution of Reservoirs in the Conditions of Uzbekistan.
18. Sadullayeva, X. A., Salomova, F. I., Mirsagatova, M. R., & Kobiljonova Sh, R. (2023). Problems of Pollution of Reservoirs in the Conditions of Uzbekistan.
19. Sadullayeva, X. A., Salomova, F. I., Mirsagatova, M. R., & Kobiljonova Sh, R. (2023). Problems of Pollution of Reservoirs in the Conditions of Uzbekistan.
20. Salomova, F. I., & Kosimova, H. T. (2017). RELEVANCE OF STUDYING INFLUENCE OF THE BONDS OF NITROGEN POLLUTING THE ENVIRONMENT ON HEALTH OF THE POPULATION SUFFERING CARDIOVASCULAR ILLNESSES (REPUBLIC OF UZBEKISTAN). In INTERNATIONAL SCIENTIFIC REVIEW OF THE PROBLEMS AND PROSPECTS OF MODERN SCIENCE AND EDUCATION (pp. 81-83).
21. Salomova, F. I., Ahmadalieva, N. O., Sadullaeva, K. A., & Sherkuzieva, G. F. (2022). Dust storm and atmosphere air pollution in Uzbekistan.
22. Salomova, F. I., Ahmadalieva, N. O., Sadullaeva, K. A., & Sherkuzieva, G. F. (2022). Dust storm and atmosphere air pollution in Uzbekistan.
23. Saydalikhujayeva, S. K., Kosimova, K. T., Mamadzhanov, N. A., & Ibragimova, S. R. (2020). The role of modern pedagogical technologies in improving the system of higher medical education in the republic of Uzbekistan. *New Day in Medicine*, 1(29), 85.
24. Sherkuzieva, G. F., Salomova, F. I., & Yuldasheva, F. U. (2023). Oziq ovqat qo'shimchalari va aholi salomatligi. 2023.«. O 'zbekistonda vinochilik va sanoat Uzumchiligi sohasining muammolari va Ularning innovatsion yechimlari» Respublika ilmiy-texnikaviy konferensiya Ilmiy ishlar to 'plami, 101-102.
25. Sherkuzieva, G. F., Salomova, F. I., & Yuldasheva, F. U. (2023). Oziq ovqat qo'shimchalari va aholi salomatligi. 2023.«. O 'zbekistonda vinochilik va sanoat Uzumchiligi sohasining muammolari va Ularning innovatsion yechimlari» Respublika ilmiy-texnikaviy konferensiya Ilmiy ishlar to 'plami, 101-102.
26. ShR, K., Mirrakhimova, M. H., & Sadullaeva, H. A. (2022). Prevalence and risk factors of bronchial asthma in children. *Journal of Theoretical and Clinical Medicine*, 2, 51-56.
27. ShR, K., Mirrakhimova, M. H., & Sadullaeva, H. A. (2022). Prevalence and risk factors of bronchial asthma in children. *Journal of Theoretical and Clinical Medicine*, 2, 51-56.
28. Tadjieva, K. S. (2024). USING SITUATIONAL TASKS TO INCREASE THE EFFECTIVENESS OF TEACHING MEDICAL CHEMISTRY. *Web of Teachers: InderScience Research*, 2(1), 64-68.
29. Tadjieva, K. S., Kosimova, K. T., & Niyazova, O. A. (2025). THE ROLE OF AIR POLLUTION IN THE DEVELOPMENT OF CARDIOVASCULAR DISEASES.
30. Tursunov, D., Sabiorva, R., Kasimova, X., Azizova, N., & Najmuddinova, N. (2016). Status of oxidant and antioxidant systems in alloxan diabetes and ways its correction. In *Science and practice: a new level of integration in the modern world* (pp. 188-190).

31. АБДУЛЛАЕВА, М., & ТАДЖИЕВА, Х. (2023). ИЗУЧЕНИЕ РАСТВОРИМОСТИ СИСТЕМ: КАЛИЕВАЯ СОЛЬ-ОДНОЗАМЕЩЕННЫЙ УКСУСНОКИСЛЫЙ МОНОЭТАНОЛАММОНИЙ-ВОДА. Международный центр научного партнерства «Новая Наука»(ИП Ивановская ИИ) КОНФЕРЕНЦИЯ: НАУЧНЫЙ ДЕБЮТ 2023 Петрозаводск, 03 декабря 2023 года Организаторы: Международный центр научного партнерства «Новая Наука»(ИП Ивановская ИИ).

32. Акромов, Д. А., & Касимова, Х. Т. (2017). Результаты изучения токсикологических свойств фунгицида" Вербактин". *Молодой ученый*, (1-2), 2-3.

33. Ахмадалиева, С. У., & Машарипова, Р. Ю. ОСНОВЫ ЗДОРОВОГО ОБРАЗА ЖИЗНИ СТУДЕНТА МЕДИКА. ББК: 51.1 л0я43 С-56 А-95, 228.

34. Ахмадалиева, С. У., & Машарипова, Р. Ю. ОСНОВЫ ЗДОРОВОГО ОБРАЗА ЖИЗНИ СТУДЕНТА МЕДИКА. ББК: 51.1 л0я43 С-56 А-95, 228.

35. Ахметов, Н. С., Азизова, М. К., & Бадыгина, Л. И. (2014). Лабораторные и семинарские занятия по общей и неорганической химии.

36. Балтбаев, У. А., Джураев, А. Д., & Таджиева, Х. С. (2008). Реакции фенилизотиоцианата с α -аминокислотами. *Жур. Химия и химическая технология*, 1, 39-42.

37. Денисова, У. Ж., & Машарипова, Р. Ю. (2022). ПОВЫШЕНИЕ ПОКАЗАТЕЛЕЙ ЭФФЕКТИВНОСТИ ОБМАННЫХ ДЕЙСТВИЙ В СОРЕВНОВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ СТУДЕНТОВ БАСКЕТБОЛИСТОВ 1-КУРСА НА ОСНОВЕ ПОДВИЖНЫХ ИГР. *Вестник науки*, 4(1 (46)), 18-24.

38. Денисова, У. Ж., & Машарипова, Р. Ю. (2022). ПОВЫШЕНИЕ ПОКАЗАТЕЛЕЙ ЭФФЕКТИВНОСТИ ОБМАННЫХ ДЕЙСТВИЙ В СОРЕВНОВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ СТУДЕНТОВ БАСКЕТБОЛИСТОВ 1-КУРСА НА ОСНОВЕ ПОДВИЖНЫХ ИГР. *Вестник науки*, 4(1 (46)), 18-24.

39. КАМИЛОВА, Д., САЙДАЛИХУЖАЕВА, Ш., МАХМУДОВА, М., РАХМАТУЛЛАЕВА, Д., & ТАДЖИЕВА, Х. (2022). ИНСОН САЛОМАТЛИГИ ВА ТИББИЙ КҮРИКНИНГ АҲАМИЯТИ. Журнал" Медицина и инновации", (3), 143-162.

40. Каримов, В. В., & Машарипова, Р. Ю. (2021). Метод «Джит Кун До» в учебном процессе на занятиях по физической культуре для студентов-стоматологов. *Вестник науки*, 4(12 (45)), 32-36.

41. Косимова, Х. Т., & Садирова, М. К. (2018). Нормативная база для проведения мониторинга по изучению влияния соединений азота на здоровье населения. In INTERNATIONAL SCIENTIFIC REVIEW OF THE PROBLEMS OF NATURAL SCIENCES AND MEDICINE (pp. 30-32).

42. Косимова, Х. Т., & Садирова, М. К. (2018). ОЦЕНКА ТЯЖЕСТИ И НАПРЯЖЕННОСТИ ТРУДОВОЙ ДЕЯТЕЛЬНОСТИ ВРАЧЕЙ ФИЗИОТЕРАПЕВТИЧЕСКИХ КАБИНЕТОВ. In WORLD SCIENCE: PROBLEMS AND INNOVATIONS (pp. 276-278).

43. Косимова, Х. Т., Мамаджанов, Н. А., & Ибрагимова, Ш. Р. (2020). РОЛЬ СОВРЕМЕННЫХ ПЕДАГОГИЧЕСКИХ ТЕХНОЛОГИЙ В ДАЛЬНЕЙШЕМ СОВЕРШЕНСТВОВАНИИ СИСТЕМЫ ВЫСШЕГО МЕДИЦИНСКОГО ОБРАЗОВАНИЯ В РЕСПУБЛИКЕ УЗБЕКИСТАН. Новый день в медицине, (1), 88-90.

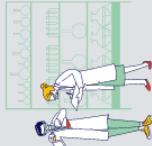
44. Машарипова РЮ, Рожкова АС. Использование нетрадиционных видов гимнастики для оптимизации занятий физической культурой в вузе. InСборник научных трудов I-Международная научно-практическая онлайн-конференция «Актуальные вопросы медицинской науки в XXI веке». УДК 2019 (Vol. 6, pp. 613-615).

45. Машарипова, Р. Ю. (2020). Повышение специальной двигательной активности студентов-стоматологов. Наука, образование и культура, (8 (52)), 51-53.

46. Машарипова, Р. Ю. (2022). АНАЛИЗ ФИЗИЧЕСКОЙ ПОДГОТОВЛЕННОСТИ СПЕЦИАЛЬНЫХ АТЛЕТОВ-ГИМНАСТОВ. *Central Asian Research Journal for Interdisciplinary Studies (CARJIS)*, 2(5), 730-737.

47. Машарипова, Р. Ю. (2022). АНАЛИЗ ФИЗИЧЕСКОЙ ПОДГОТОВЛЕННОСТИ СПЕЦИАЛЬНЫХ АТЛЕТОВ-ГИМНАСТОВ. *Central Asian Research Journal for Interdisciplinary Studies (CARJIS)*, 2(5), 730-737.

48. Машарипова, Р. Ю., & Хасанова, Г. М. (2020). Повышение двигательной подготовленности студентов-стоматологов в процессе учебных занятий физической культурой. Вестник науки, 5(3 (24)), 101-104.


49. Пахрудинова, Н. Ю., Хасанова, Г. М., & Машарипова, Р. Ю. Хореография и здоровый образ жизни. *ББК: 51.1 л0я43 С-56 А-95*, 278.

50. Таджиева, Х. С. (2022). ИСПОЛЬЗОВАНИЕ МЕТОДА ПРОБЛЕМНЫХ СИТУАЦИЙ НА ЗАНЯТИЯХ МЕДИЦИНСКОЙ ХИМИИ. In *Kimyo va tibbiyot: nazariyadan amaliyotgacha* (pp. 205-208).

51. Таджиева, Х. С. (2023). МОДЕЛИРОВАНИЕ ПРОБЛЕМНОГО ОБУЧЕНИЯ В МЕДИЦИНСКОМ ВУЗЕ. *West Kazakhstan Medical Journal*, (3 (65)), 170-175.

52. Таджиева, Х., & Юсупходжаева, Х. (2023). Особенности преподавания медицинской химии в современных условиях на лечебном и педиатрическом факультетах медицинских вузов. *Современные аспекты развития фундаментальных наук и вопросы их преподавания*, 1(1), 119-124.

53. Шеркузиева, Г. Ф., & Касимова, Х. Т. (2017). Токсичность биологически активной добавки "Laktonorm-H (К Kaliy)" в условиях хронического эксперимента. Молодой ученый, (1-2), 10-12.

