

ISSN (E): 2938-3757

1 N.M. Saidmakhamadov.,

2 V. B. Bekchanova.,

3 K. Kh. Abdullaev.,

4 N. X. Tadjiev.,

5 I.T. Tuxtaboev.,

6 M. N. Gaybullaev

1,2,3,5,6 Namangan Engineering – Construction Institute

4 Tashkent State Technical University

Abstract

A technology has been developed for producing high – quality foundry products with high physical and mechanical properties without non – metallic and gaseous pores by treating steel grades $35 \text{X}\Gamma\text{C}\Pi$ and $110\Gamma13\Pi$ with oxidizing elements in and outside the furnace.

Keywords: electric arc furnace, lining, alloy, flux, low – alloy steel, limestone, quartz sand, ferroalloy, ferromanganese, ferrosilicon, oxidation, reduction.

Introduction

Today, it is important to develop methods for the production of iron and its alloys and obtaining high – quality ingots from them. In particular, the production of stainless types of steel increased rapidly [1, 2]. Methods of obtaining steel in quantities of industrial importance are called steel metallurgy. An alloy of iron deformed by carbon and other elements is called steel [3]. The composition of steel includes carbon, manganese, silicon, sulfur, phosphorus. Alloying additives are added to the metal to obtain special properties: chromium, nickel, molybdenum, tungsten, copper, neobium, vanadium, etc., and a large amount of manganese and silicon. Obtaining iron in its pure form is a difficult and expensive process. For this reason, the technology of melting low – alloyed steels has been developed at the production enterprise [4 – 8].

RESEARCH METHODS

Nowadays electric arc and induction furnaces are widely used for melting products made from high – quality steel alloys in bulk. One of the most important priorities for melting in an electric arc furnace is to obtain quality castings.

Figure 1. Melting process of 35XΓCJI steel alloy in a 500 kg electric arc furnace in the foundry mechanics workshop of "UzMetkombinat" JSC [9].

Therefore, in order to melt high – quality cast products from 35 X Γ C Π and 110 Γ 13 Π steel alloys, an electric arc furnace consisting of a 500 kg base liner was selected in the foundry workshop of the "UzMetkombinat JSC" enterprise [9 – 12]. Furnace linings are divided into acidic and basic types. Basic furnaces are widespread, the walls are made of magnesite bricks, and the bottom is covered with magnesite powder. As a flux, limestone is used for basic furnaces, and quartz sand is used for acid furnaces [13, 14 – 18].

First of all, the chemical composition of low – alloy steel alloy brands $35X\Gamma C \Pi$ and $110\Gamma 13\Pi$ was developed by the production enterprise. The developed chemical composition can be seen in Table 1.

Table 1 The chemical composition of the alloy developed by the enterprise

Brand	C	Si	Mn	Cr	Mo	W	Ni	S	P
35ХГСЛ	0.32-	0.6 -	0.9 –	0.7 –	0.1 -	0.2 -	0,03 -	0,015-	0,015 -
	0.40	0.9	1.2	1.0	0.2	0,3	0.04	0.025	0.025

Based on the developed chemical composition, it was found that the shafts have glassy inclusions and gas pores after pouring into a sand – clay mold. Defects of shafts cast from factory – cast $35X\Gamma CJI low$ – alloy steel alloy are shown in Fig. 2 [19 – 24].

Figure 2. Defects of cast shafts are shown

The causes of the above problems and the appearance of mirror inclusions were studied and several methods were analyzed [25-28].

In the first way: non — metallic inclusions include modifiers and non — metallic inclusions with ferroalloys. In addition, due to the oxygen contained in the air, the alloy is oxidized and metal oxide is formed.

In the second way: non – metallic inclusions occur as a result of mold sand being added to the metal composition, furnace lining (lining) being added to the metal composition in the process of melting the alloy.

Researchers have developed a technological route to prevent these defects. The chemical composition of the alloy in the developed technological route is shown in Table 2 [29-35].

Table 2 Developed chemical composition

Brand	C	Si	Mn	Cr	Mo	Ni	Al	P	S
35ХГСЛ	0.32-	0.6 –	0.9 –	0.7 –	0.1 –	0,03 -	0.3 –	0,015-	0,015-
	0.40	0.9	1.2	1.0	0.2	0.04	0.5	0.025	0.025

 $С\Pi \coprod -1$ and $C\Pi \coprod -2$ (Cт3-Cт5) samples, ferrosilicon FeSi75, ferromanganese FMn88, FMn90, ferrochrome FX100, and coke pieces were used as solid materials for melting $35X\Gamma C \coprod$ brand steel.

For the purpose of reoxidation, the following were used.

- cast aluminum Al 1 and Al 2;
- pieces of coke Γ OCT 3340 88.

The following alloying elements were used as alloying elements.

- ferrosilicon Γ OCT 1415 93;
- ferromanganese Γ OCT 4755 91;

– ferrochrome ΦX100 ΓOCT 4757 – 91

The following were used as slag formers and as coating agents on the surface of liquid metal [16]:

- TSh 64 - 14869486 - 01:2007 "Limestone of the Kuterminsky mine.

All charge materials: metal part, slag forming agents and reoxidizers were used [36-40].

RESULTS

Figure 3. 35ΧΓСЛ low – alloy steel melt – cast shaft detail without defects

In Figure 3, the shaft detail is placed in the $35\text{X}\Gamma\text{C}\Pi$ sand – clay mold, the samples are removed from the sand – clay mold, and the surface of the samples is cleaned with SiC. Then it was determined on the spectral analysis device of the "SPEKTROLAB – 10 M" model and is listed in Table 3 [41, 42].

Table 3 Chemical composition of melted 35XГСЛ brand

Brand	С	Si	Mn	Cr	Mo	Ni	Al	P	S
35ХГСЛ	0.35	0.7	1.1	0.8	0.1	0,03	0.4	0,020	0,018

The samples were metallographically examined in laboratory conditions at a magnification of x500 to x1500 in an optical microscope, and the obtained result is shown in Figure 4.

Figure 4. Microstructures of the samples obtained under an optical microscope

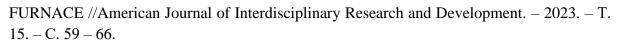
As can be seen in Figure 4, a ferrite – pearlite and less austenite structure was observed when the samples were magnified from x500 to x1500 times in an optical microscope. It was observed that the hardness of the sample after heating to 880 °C is 47-51 HRC according to Rockwell, and the structure after tempering is martensite and residual austenite [43-45].

CONCLUSION

The technology of obtaining high – quality cast products with high physical and mechanical properties, free of non – metals and gas pores, was developed by treating liquid metal with additives of $35 \text{X} \Gamma \text{C} \Pi$ and $110 \Gamma 13 \Pi$ steel alloys in the furnace and outside the furnace.

The technology of melting $35X\Gamma C \Pi$ and $110\Gamma 13\Pi$ alloys in an optimal way and pouring them into sand – clay molds has been developed.

67 | Page


REFERENCES

- [1] Bekmirzaev, S., Saidmakhamadov, N., & Ubaydullaev, M. (2016). Obtaining sand clay casting". Theory and practice of modern. Russia, (4 (12)), 112.
- [2] Саидмахамадов Н. и др. Технология предотврашения пор в отливах //Экономика и социум. -2019. № 4. C. 661 672.
- [3] Саидмахамадов Н. и др. Общая технология производства порошково констукционных материалов //Экономика и социум. 2019. №. 4. С. 673 680.
- [4] Саидмахамадов Н., Хайдаров У., Эгамбердиев Б. Улучшение подготовки технологий методом специального сливания //Экономика и социум. 2019. №. 4. С. 651 660.
- [5] Turakhodjaev, N., Saidmakhamadov, N., Turakhujaeva, S., Akramov, M., Turakhujaeva, A., & Turakhodjaeva, F. (2020). Effect of metal crystallation period on product quality. Theoretical & Applied Science, (11), 23 31.
- [6] Turakhodjaev, N. D., Saidmakhamadov, N. M., Zokirov, R. S., Odilov, F. U., & Tashkhodjaeva, K. U. (2020). Analysis of defects in white cast iron. Theoretical & Applied Science, (6), 675 682.
- [7] Shirinkhon, T., Azizakhon, T., & Nosir, S. (2020). Methods For Reducing Metal Oxidation When Melting Aluminum Alloys. International Journal of Innovations in Engineering Research and Technology, 7(10), 77 82.
- [8] Djahongirovich, T. N., & Muysinaliyevich, S. N. (2020). Important features of casting systems when casting alloy cast irons in sand clay molds. ACADEMICIA: An International Multidisciplinary Research Journal, 10(5), 1573 1580.
- [9] Nodir, T., Nosir, S., Shirinkhon, T., Erkin, K., Azizakhon, T., & Mukhammadali, A. (2021). Development Of Technology To Increase Resistance Of High Chromium Cast Iron. The American Journal of Engineering and Technology, 3(03), 85 92.
- [10] Nodir T. et al. Development of 280X29Nl Alloy Liquefaction Technology to Increase the Hardness and Corrosion Resistance of Cast Products //International Journal of Mechatronics and Applied Mechanics. 2021. T. 154. C. 2021.
- [11] Turakhodjaev N. et al. Quality improvement of the steel melting technology in an electric arc furnace //ACADEMICIA: An International Multidisciplinary Research Journal. $-2021. T. 11. N_{\odot}$. 7. -C. 48 54.
- [12] Saidmakhamadov N., Abdullaev K., Khasanov J. Теория и практика современной науки //теория и практика современной науки Учредители: ООО" Институт управления и социально экономического развития". \mathbb{N}_2 . 2. С. 3 8.
- [13] Nosir S. et al. Development of High Chromium White Cast Iron Liquefaction Technology //Eurasian Journal of Engineering and Technology. 2022. T. 4. C. 123 127.
- [14] Nosir S. et al. Development of technology for obtaining quality castings from steel alloys //Eurasian Journal of Engineering and Technology. -2022. -T. 5. -C. 135 138.
- [15] Nosir S. et al. Technology for Obtaining High Quality Castings from Resistance White Cast Iron //Eurasian Journal of Engineering and Technology. 2022. T. 5. C. 139 148.
- [16] Nosir S. et al. Technology to Increase the Hardness and Resistance of High Chromium White Cast Iron //European Multidisciplinary Journal of Modern Science. 2022. T. 6. C. 665 670.

- [17] Nosir S. et al. Development of Technology for Production of Wear Resistant Cast Products //Middle European Scientific Bulletin. 2022. T. 25. 516 522.
- [18] Nosir S. et al. Improvement of the Technology of Obtaining High Chromium Wear Resistant White Cast Iron //Spanish Journal of Innovation and Integrity. 2022. T. 07. 498 504.
- [19] Nosir S. et al. Study of the Effect of Copper Addition on Secondary Carbides with High Chromium Wear Resistant White Cast Iron //International Journal of Innovative Analyses and Emerging Technology. 2022. T. 2. 37 43.
- [20] Nosir S. et al. DEVELOPMENT OF QUALITY STEEL ALLOY LIQUIDATION TECHNOLOGY //American Journal of Interdisciplinary Research and Development. 2022. T. 7. C. 74 83.
- [21] Valida B. et al. Explore of the Technology of Liquefaction of High Quality Ingots from Steel Alloys //Czech Journal of Multidisciplinary Innovations. 2022. T. 8. C. 1 7.
- [22] Nosir S. et al. Improvement of Technology of Liquefaction of Gray Cast Iron Alloy //Global Scientific Review. -2022. -T. 6. -C. 19 28.
- [23] Saidmakhamadov N., Abdullaev K., Khasanov J. DEVELOPMENT OF 280X29NL BRAND RESISTANCE WHITE CAST IRON LIQUEFACTION TECHNOLOGY //Теория и практика современной науки. 2022. №. 2 (80). С. 3 8.
- [24] Saidmakhamadov N. et al. Improvement of liquidation technology of construction steels //Техника и технологии машиностроения. -2022.-C.57-62.
- [25] Valida B. et al. Technology of Increasing the Service Life of Based Lining Based on Recycling //Central Asian Journal of Theoretical and Applied Science. -2022. -T. 3. №. 11. -C. 43 48.
- [26] Nosir S. et al. CAST IRON LIQUEFACTION TECHNOLOGY //EDITORIAL BOARD. 2022. C. 812.
- [27] Nosir S. et al. Development new brands of resistance white cast Irons //European Journal of Research Development and Sustainability. -2022. -T. 3. No. 1. -C. 116 120.
- [28] Valida B. et al. Improvement of the Technology of Liquefaction of A500 Low–Carbon Steel Alloy in an Electric ARC Furnace //Central Asian Journal of Theoretical and Applied Science. -2022.-T.3.-N2. 12.-C.159-164.
- [29] Valida B. et al. Extending the Service Life of The Electric ARC Furnace Lining //Central Asian Journal of Theoretical and Applied Science. -2022. T. 3. №. 12. C. 153 158.
- [30] Valida B. et al. Improvement of the Technology of Liquidation of A500 Brand Low Carbon Steel Alloy in the Induction Furnace //Central Asian Journal of Theoretical and Applied Science. $-2022. T. 3. N_{\odot}. 12. C. 1 6.$
- [32] Nosir S., Bokhodir K. Development of liquefaction technology 280X29NL to increase the strength and brittleness of castings //International Conference on Reliable Systems Engineering. Cham: Springer International Publishing, 2022. C. 105 115.
- [33] Saidmakhamadov N. M. et al. DEVELOPMENT OF TECHNOLOGY FOR LIQUEFACTION OF STEEL ALLOYS: DEVELOPMENT OF TECHNOLOGY FOR LIQUEFACTION OF STEEL ALLOYS. 2023.
- [34] Saidmakhamadov N. et al. IMPROVEMENT OF THE TECHNOLOGY OF CASTING SHAFT COMPONENTS FROM 35XGCL BRAND STEEL IN AN ELECTRIC ARC

- [35] Saidmakhamadov N. M. et al. Improve Casting Properties of Steel Alloy //Miasto Przyszłości. 2023. T. 40. C. 323 328.
- [36] Саидмахамадов Н. М. и др. Саидмахамадов, Н. М., et al. "ЭЛЕКТР ЁЙ ПЕЧИДА 35ГС МАРКАЛИ ПЎЛАТ ҚОТИШМАСИНИ СУЮҚЛАНТИРИБ ОЛИШ: ЭЛЕКТР ЁЙ ПЕЧИДА 35ГС МАРКАЛИ ПЎЛАТ ҚОТИШМАСИНИ СУЮҚЛАНТИРИБ ОЛИШ." (2023): 251 254.
- [37] Саидмахамадов Н. М. и др. Разработка технологии плавки стальных отливок современными методами //Инновационные технологии в машиностроении: сборник трудов XIV Международной научно практической конференции, 25 27 мая 2023 г., Юрга. Томский политехнический университет, 2023. С. 93 98.
- [38] Valida B. et al. Improvement of the Technology of Production of Quality Semi Finished Product Products from Steel Alloy. 2023.
- [39] Nosir S. et al. Improvement of the Technology of Pouring Thin Walled Gray Cast Iron into a Sand Clay Mold. 2023.
- [40] Nosir S. et al. Improvement of the Technology of Obtaining High Chromium Wear Resistant White Cast Iron. 2023.
- [41] Valida B. et al. Development of Technology of Liquefaction of Steel Alloys in Electric Furnaces. 2023.
- [42] Kholmirzaev N. et al. Development of Technology of Making Shafts from Steel Alloy 35XGCL //International Conference on Reliable Systems Engineering. Cham: Springer Nature Switzerland, 2023. C. 216 223.
- [43] Saidmakhamadov N. M. et al. Energy Balance In Steel Liquefaction In Induction Furnaces And Electric Arc Furnaces //Academicia Globe: Inderscience Research. $-2023.-T.\ 1.-N_{\odot}$. $2.-C.\ 9-9$.
- [44] Kholmirzaev N. et al. Effects of titanium (Ti) contents on the wear resistance of low alloy steel alloys //E3S Web of Conferences. EDP Sciences, 2024. T. 525. C. 03003.
- [45] Saidmakhamadov N. et al. Improving the design of the lining of the ball mill used to improve the quality of grinding //E3S Web of Conferences. EDP Sciences, 2024. T. 525. C. 02017.

