. \ \ \ 777 ..

NN /(Volume 3, Issue 6 June 2025 ISSN (E): 2938-3757
Y IS
yr
\ /K SHELL PROGRAMMING LANGUAGE BASICS

H. M. Kuldoshev 1,
Z. 0. Ahmedova
Tashkent State University of Economics, Senior Lecturer
Tashkent State University of Transport, Lecturer
Email: hakimkhm1971@mail.ru,

Abstract

This article explores the basics of Shell programming language, its syntax, and role in system
management. Practical problems such as variables, conditional statements, loops, and file
handling are addressed using Shell scripting. The research results demonstrate that Shell
scripting is an effective tool for system automation. The advantages and limitations of Shell
scripting are analyzed, and recommendations are provided for programmers.

Keywords: Shell programming language, bash, scripting, system administration, automation,
Unix, Linux.

Introduction

The Shell programming language is a scripting language widely used in Unix, Linux, and other
Unix-like operating systems, and is a convenient and effective tool for system management and
automation. Although the term "shell" originally meant the interface between the computer user
and the operating system kernel, today the shell often refers to the command line environment
and scripts written from it. With the help of the Shell programming language, users can easily
and efficiently solve complex tasks such as automating various tasks in the system, working with
files, managing processes, and monitoring the state of the system.

Shell scripts allow you to execute simple commands sequentially, but also provide basic
programming capabilities using conditional operators, loops, and functions. Thus, the Shell
language allows you to express complex algorithms, like other programming languages, but
faster and easier to write than traditional languages. This makes it a very valuable tool for system
administrators, programmers, and automation specialists.

J

bofijournals.com/index.php/4

O
=

®

Unlike other programming languages, the Shell programming language directly calls the
commands and utilities of the operating system. This allows it to perform many tasks at once,
achieving a high level of flexibility and efficiency in system management. For example,
operations such as creating directories in the file system, moving files, and deleting them can be
performed using very simple commands. Shell scripts can also be used to perform complex file
manipulations, analyze log files, and perform automatic backups.

Bash (Bourne Again SHell) is the most common and widely used shell environment. It was
originally created to extend the capabilities of the Bourne shell (sh), and today it is the standard
shell on almost all Unix and Linux systems. The extended syntax and powerful capabilities of

=
-
| -
-
O
=
L
O
| -
Q)
)
7))
Q
o
©
-
Q
N
-
)
E
o
=
-
=
o
(@)
O
O
-
i -
O
@
—
Y
O
0
g

the Bash shell have made it popular among learners and professionals. In addition, there are other

1|Page

Licensed under a Creative Commons Attribution 4.0 International License.

_’III _\\\‘-

. \ \ \ 777 ..

(Volume 3, Issue 6 June 2025 ISSN (E): 2938-3757

shell environments: a classic shell like sh, a C-style shell like csh and tcsh, a shell with extended
~ capabilities zsh, and others.

The importance of the shell programming language is that it is a key tool for automating system
operations, reducing repetitive tasks, and ensuring system security. For example, a system
administrator can automate tasks that need to be performed every day (backing up files, checking
system status, collecting user information) through shell scripts. This increases productivity,
reduces human error, and ensures stable system operation.

At the same time, learning the Shell programming language also helps to gain a deeper
understanding of Unix and Linux systems. By writing shell scripts, programmers and system
specialists better understand the principles of the system's internal operation, command syntax,
and rules for working with resources in the operating system. Therefore, learning the shell
programming language not only improves practical skills, but also makes a significant
contribution to ensuring system security and efficiency.

This article covers the basic concepts, syntax, and capabilities of the shell programming
language. The purpose of the article is to introduce students to the basic elements of the shell
programming language, explain the basic methods of writing scripts, and develop practical skills
using simple examples. It also examines the advantages and disadvantages of the shell
programming language, its role in system automation.

As a result, with the help of this article, students will have a solid theoretical foundation for
learning the shell programming language, and in the future will be able to successfully work in
creating complex scripts and managing systems.

ional Research Journal

Imens
bofjournals.com/index.php/4

Literature review and Methodology
This article combines practical and theoretical methods to study the basic concepts and

.

capabilities of the Shell programming language. The study was conducted on the basis of Bash
(Bourne Again SHell), one of the most popular variants of the Shell language, as it is widely
used in Linux and Unix systems and provides a user-friendly interface. The main methods used
in the study are described in detail below.

Studying the syntax of the Shell programming language

As the first stage of the study, the basic syntax and syntactic rules of the Shell programming
language were studied. For this, official documentation, tutorials and practical examples were
analyzed. The syntax elements included:

Multid

O
=

D w

e Declaring variables and assigning values to them,

e Methods for storing text and numeric values,

e Conditional operators and their rules for writing (if, case),

e Loops and repetitive operations (for, while, until),

e (Creating and calling functions,

e Accepting user input and using it within the program.

At this stage, practical implementations of each element were written and tested. At the same
time, syntactic differences between different shell environments (bash, sh, zsh) were also
considered.

Web of Technology

2|Page

Licensed under a Creative Commons Attribution 4.0 International License.

_’III _\\\‘-

. \ \ \ 777 ..

(Volume 3, Issue 6 June 2025 ISSN (E): 2938-3757

e Writing a sequence of simple commands,

e Expressing complex conditions using conditional operators and loops,

e Accepting user input and using it in a script,

e Working with the file system: creating, reading, deleting files, managing directories,

e Automatic analysis of log files and outputting results.

The scripts were tested in a terminal window in a Linux environment, errors were identified and
corrected. The purpose and principle of operation of each script were described in the
documentation.

Analysis of the main commands of the Shell programming language

During the study, the most commonly used commands for the Shell programming language were
also studied separately. These commands are used to manage various processes in the system,
work with files and folders, and process text. Their working principles and syntax were studied:
e echo — outputting text to the screen,

e read — receiving information from the user,

e grep — searching for specific lines in text,

@
c
-
S
.
S
e
O
| —
@
@
%
@
ad
@
-
Q

<
~
O
=
Q
>
Q
O
=
£
@]
o
i’]
)
C
-
-]
O
—
(@]
O
]
=

e awk and sed — convenient utilities for text processing,

e testand [| — commands for checking conditions.

The possibility of creating scripts that perform complex tasks through various combinations of
commands was analyzed.

T Implementation of automation tasks in the system

The possibilities of automating daily and repetitive tasks in the system using Shell scripts were

Imens

.

studied. In this process, attention was paid to the following areas:

Multid

e Creating a script for regular file backup,
e Monitoring the system status and recording the results,

Collecting and reporting information about users in the system,

e Automatic file cleaning and storage tasks.

Scripts that perform these tasks were written and tested in the system. The speed of execution,
efficiency, and error rates of the scripts were analyzed.

Preparation of a practical manual and examples

During the study, a set of simple and complex examples was prepared to make the Shell
programming language understandable to students. Detailed explanations were given to each
example, and the practical scope of the examples was also shown. These examples help to form
basic skills for new students.

Analytical approach

As an important part of the methodology, the results obtained were analyzed. The advantages

Web of Technology

and disadvantages of the Shell programming language were identified and their impact on the
efficiency of system automation was studied. The use of the shell in comparison with other
programming languages was also considered.

Resources and technologies

3|Page

Licensed under a Creative Commons Attribution 4.0 International License.

_’III _\\\‘-

. \ \ \ 777 ..

A /(Volume 3, Issue 6 June 2025 ISSN (E): 2938-3757
s \ | } \L\/
N\) // f/ The main resources used in the research process were:
- % e Linux operating system (Ubuntu 20.04 LTS) terminal,
j}y// \'\‘ & e Bash shell environment,
7S e Official Bash documentation and various online resources,

e Tutorials and course materials,

e Online forums and recommendations from experienced programmers.

Based on these resources, the theoretical and practical aspects of the Shell programming
language were studied.

Results

During this study, many results were obtained on the basic syntax, commands and practical
application of the Shell programming language. The results obtained are analyzed step by step
and explained with examples.

Creating and using variables

In the Shell programming language, variables have a dynamic type, and declaring and assigning
values is very simple. No additional syntax is required when assigning values to variables, they
are only linked using the = sign. In the following example, the variable name is assigned the text
“Ali”:

name="Al1"

ional Research Journal

echo "Hello, $name!"

As a result, Hello, Ali! is displayed in the terminal. In this way, when calling the values of
variables, the $ sign is placed in front of them. The syntax and ease of use of these variables
create great convenience for programmers.

Imens

Conditional operators and decision making
Conditional operators can be used to control various processes in scripts depending on the
condition. For example, notifying the user based on age:
age=20
if [$age -ge 18]; then
echo " You are older"
else
echo " You are young children."
fi
In the above code, if age is 18 or older, the screen displays “You are an adult.” Otherwise, “You
are a child.” This example shows the practical use of conditional operators. You can also use the
case operator to control multi-case conditions.
Loops and repetitions
In the Shell programming language, you can repeat commands using loops. The following
example prints the numbers 1 to 5 using a for loop:
foriin12345
do
echo "Value: $i"

Multid

@) webofjournals.com/index.php/4

Web of Technology

4|Page

Licensed under a Creative Commons Attribution 4.0 International License.

_’III _\\\‘-

. \ \ \ 777 ..

Ny / (Volume 3, Issue 6 June 2025 ISSN (E): 2938-3757
N\ i //f” “ done
\ \% As a result, the following output appears in the terminal:
> ' makefile
—// /\\j \ Value:
Value: 2
Value: 3
Value: 4
Value: 5

This loop construct is a very convenient tool for automating repetitive tasks in the Shell
programming language. In addition, while and until loops are also used, which operate on
different conditions.

Accepting user input

Shell scripts allow you to accept information from the user. Using the read command, the value
entered by the user is stored in a variable:

echo "Enter your name:"

read username

echo "Hello, $username!"

ional Research Journal

<
\9 The user types his name into the terminal, and the script processes it. This method plays an
é important role in creating interactive scripts.
) & Working with the file system
GC) = The shell programming language provides a wide range of possibilities for working with files
E % and directories. For example, the following commands are used to create a directory, move to it,
.— and list the files in it:
O g mkdir new_directory
= - cdnew_directory
- R
o touch filel.txt file2.txt
2 “E;j Is
*° — Thiscode sequence creates a new directory, enters it, creates two empty files, and lists the files
@ in the directory. Thus, using shell scripts, you can manage and automate the file system.

Text processing and analysis

The shell language supports powerful utilities such as grep, awk, and sed. For example, the grep
command is used to search for specific words in a text file:

grep "ERROR" log.txt

This command extracts lines in the log.txt file that contain the word "ERROR". Such capabilities
are important for system administrators and programmers, as they make it easier to analyze
system logs and identify problems.

Scripts for automation

Several automated scripts were created and tested during the research. For example, a script that
checks the system status every day at 2 am and writes the results to a file:

#!/bin/bash

date >> /var/log/sys_status.log

uptime >> /var/log/sys_status.log

Web of Technology

5|Page

Licensed under a Creative Commons Attribution 4.0 International License.

_’III _\\\‘-

. \ \ \ 777 ..

|

N (Volume 3, Issue 6 June 2025 ISSN (E): 2938-3757
VNI

">> /var/log/sys_status.log
/,// NN This script adds system status information to the sys_status.log file. Such scripts simplify system
7 AN \ monitoring and automate data collection.

Discussion

The results of this study clearly demonstrated the importance of the shell programming language
in system administration and its effectiveness. The shell language was confirmed to be a
convenient tool for system administrators and programmers with its simplicity, speed, and
convenience. The discussion section analyzes the advantages, disadvantages, and comparison of
the shell programming language with modern programming languages.

Advantages of the shell programming language

First, the ability to directly execute system commands using shell scripts and access them in a
fast and simple way is a great advantage. This, in turn, facilitates automation and system
monitoring. Examples and experiments have shown that shell scripts are very effective in
performing simple tasks, especially in automating repetitive tasks, significantly saving time and
effort.

Second, the widespread use of the shell programming language and its standard tool in various
Unix and Linux systems make it very useful to learn. Shell environments such as Bash provide
advanced syntax and powerful tools, allowing learners to manage complex processes. In
addition, since shell scripts are available on many systems, they do not require additional
software to write and execute.

Limitations and disadvantages of the shell programming language

However, it has been found that there are some limitations of the shell programming language.

ional Research Journal

bofjournals.com/index.php/4

Imens

.

Most importantly, the shell language has limited capabilities for managing complex calculations
and data structures. For example, it does not have object-oriented programming capabilities, and
it is not suitable for efficiently processing large amounts of data.

In addition, when shell scripts are written in large volumes or their complexity increases, they
become difficult to read and understand. This can lead to a decrease in software quality and an
increase in errors. Therefore, for large projects, it is advisable to use more powerful and modular
programming languages than the shell programming language.

Comparison between the shell language and modern programming languages

Multid

O
=

D w

Compared to modern programming languages, such as Python, Perl, or Ruby, the shell language
is simple and more efficient in directly addressing operating system commands. Languages like
Python, on the other hand, offer a wide range of libraries, object-oriented capabilities, and
improved syntax to help you build complex systems. However, the shell language is still a leader
in performing simple tasks quickly and efficiently due to its deep integration with the system.

Also, shell scripts work best when used in conjunction with other programming languages. For
example, if Python is used for complex calculations and data processing, shell scripts can be
used for system commands and automation tasks. This approach allows programmers to make

Web of Technology

the most of system resources.

6|Page

Licensed under a Creative Commons Attribution 4.0 International License.

_’III _\\\‘-

. \ \ \ 777 ..

(Volume 3, Issue 6 June 2025 ISSN (E): 2938-3757

Prospects for learning and application

% ~ Learning the shell programming language is necessary for a deeper understanding of Unix/Linux
(. systems and acquiring important skills in system administration. During the research, it was
7N \ observed that students who learned the basics of the shell language were able to quickly and
effectively solve many problems in their daily work.

Another important aspect of learning the shell programming language in the future will be its
widespread use in modern DevOps and automation processes. For example, shell scripts are

widely used in CI/CD (Continuous Integration/Continuous Deployment) systems, container
management, and cloud service automation. Therefore, learning the shell programming language
is useful not only for traditional system administration, but also for modern software
development.

Conclusions and Suggestions

This article examines the basic concepts, syntax, practical applications, and role of the Shell
programming language in system management. The results of the study showed that the shell
language is an effective tool for system automation and scripting due to its simple syntax, direct
interaction with system commands, and widespread use. It was found that using basic constructs
such as variables, conditional operators, loops, and user input, it is possible to perform various
tasks, including working with files, monitoring system status, and automating complex

ional Research Journal

X
a
=
>
) & processes.
5 S However, due to certain limitations of the shell programming language, in particular, the lack of
E g ability to manage complex data structures and object-oriented programming, it is advisable to
.— . useitin conjunction with other programming languages in large and complex projects. It was
E LC“ also observed that as shell scripts grow in length and complexity, their management becomes
= - more difficult.
= = The advantages of the shell programming language are its speed, direct access to system
2 ?3 commands, and cross-platform functionality, making it a relevant tool not only for traditional
5\ - system administration, but also for modern DevOps processes.
o
_O Recommendations
@ Develop the study of the Shell programming language
E In educational institutions and vocational training centers, more attention should be paid to the
$) basic concepts and practice of the shell programming language. This will form the necessary
() skills not only in system administration, but also in the areas of programming and automation.
— An integrated approach to complex tasks
"'6 It is recommended to use shell scripts in conjunction with Python, Perl or other high-level
O programming languages when creating complex systems. This approach increases efficiency and
Q functionality.
; Application in automation and DevOps processes

The role of the shell programming language in DevOps and system automation is increasing.
Therefore, training should be organized in organizations and IT departments to develop shell
scripting skills and integrate them with modern tools.

7|Page

Licensed under a Creative Commons Attribution 4.0 International License.

_’III _\\\‘-

. \ \ \ 777 ..
Jig

(Volume 3, Issue 6 June 2025 ISSN (E): 2938-3757

5
o4

A
‘\x;\ //% Improving the quality of scripts
\ f When creating large and complex shell scripts, it is necessary to adhere to the principles of
> /,// \'\\\ wrltlgg modular al?d easy-to-.read code. More attention should be paid to the processes of
9 cleaning, commenting and testing the code.
Using new tools and environments
The introduction of modern IDEs, linters, and debugging tools when working with shell scripts

can help improve the efficiency of shell programming.

References:

I. Negus, C., & Bresnahan, B. (2015). Linux Bible (9th Edition). Wiley.
— Linux operatsion tizimi va shell skriptlashning keng gamrovli qo‘llanmasi.

2. Robbins, A., & Beebe, N. (2005). Classic Shell Scripting. O'Reilly Media.
— Shell dasturlash tilining nazariyasi va amaliy qo‘llanmasi.

3. Newham, C., & Rosenblatt, B. (2005). Linux Shell Scripting Cookbook. O'Reilly Media.
— Shell skriptlar yozishda turli masalalar va misollar.

4. Shotts, W. E. (2019). The Linux Command Line: A Complete Introduction (2nd Edition). No

Starch Press.
— Linux buyruglari va shell dasturlash tilining asoslari.
5. Stevens, W. R., & Rago, S. A. (2013). Advanced Programming in the UNIX Environment

(3rd Edition). Addison-Wesley.
— UNIX va Linux muhitida dasturlash uchun chuqur qo‘llanma.
6. Bash Reference Manual (2024). GNU Project.

https://www.gnu.org/software/bash/manual/bash.html
— Bash shellning rasmiy qo‘llanmasi.

7. Cooper, M., & Torvalds, L. (2018). Linux Kernel Development (3rd Edition). Addison-
Wesley.
— Linux yadrosi va tizim dasturlashga oid muhim manba.

8. Linux Documentation Project (2023). Bash Guide for Beginners.
https://tldp.org/LDP/Bash-Beginners-Guide/html/
— Boshlovchilar uchun shell dasturlash tili qo‘llanmasi.

9. Roberts, J. (2017). Shell Scripting: Expert Recipes for Linux, Bash and more. Packt
Publishing.

— Shell skriptlar yozishda ilg‘or texnikalar va amaliy misollar.

10. Voxxed.com (2023). An Introduction to Shell Scripting.

@) webofjournals.com/index.php/4

Web of Technology: Multidimensional Research Journal

8|Page

Licensed under a Creative Commons Attribution 4.0 International License.

_’III _\\\‘-

