

DIAGNOSTIC GENES AND THEIR IMPORTANCE IN THE DIAGNOSIS OF NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD)

ISSN (E): 2938-3765

Zokirov Vahid Zoyit ogli Zarmed University Assistant of Clinical Sciences PhD zokirovvohid@gmail.com

Shodmonova Humora Sirojiddin kizi 4th Year Student of the Medical Faculty of the Bukhara State Medical Institute named after Abu Ali ibn Sino xumorashodmonova1@gmail.com

Abstract

Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases not associated with alcohol consumption. In recent years, special attention has been paid to the molecular genetic mechanisms of NAFLD pathogenesis, including the role of diagnostic genes. The article discusses the main genes associated with the development and progression of NAFLD, their diagnostic value, as well as the prospects for the use of genetic markers in clinical practice.

Keywords: NAFLD, genes, diagnostics, PNPLA3, TM6SF2, GCKR, MBOAT7, genetic markers, molecular diagnostics.

Introduction

Relevance of NAFLD study Epidemiology and impact on public health Diagnostic difficulties and need for new methods The role of genetics in the pathogenesis of NAFLD

Chapter 1. NAFLD Overview

Definition and Classification

Stages of Progression: Steatosis → Steatohepatitis → Fibrosis → Cirrhosis

Clinical and Diagnostic Criteria

Modern Diagnostic Methods (ultrasound, biochemistry, biopsy)

Chapter 2. Genetic predisposition to NAFLD

Genetic vulnerability: general principles

The role of heredity and ethnic factors

Familial forms of NAFLD

Volume 3, Issue 6, June 2025

Chapter 3. Key genes associated with NAFLD

3.1. PNPLA3 (rs738409)

Gene functions and polymorphism

Associations with the severity of steatosis and fibrosis

Mechanism of action of the I148M variant

3.2. TM6SF2 (rs58542926)

Effect on lipid metabolism and hepatocytes

Role in the progression of NAFLD

Genetic features

3.3. GCKR (rs1260326)

Involvement in the regulation of glucose and lipid metabolism

Role in liver steatosis

3.4. MBOAT7 (rs641738)

Functions in phospholipid metabolism

Association with inflammation and fibrosis

3.5. HSD17B13

Protective alleles

Effect on liver enzymatic damage levels

Chapter 4. Methods for Determining Genetic Markers

PCR and RT-PCR

Next Generation Sequencing (NGS)

Microarrays and Panel Tests

Bioinformatics approaches

Chapter 5. Genetic diagnostics in clinical practice

Prospects for the implementation of genetic screening

Individualized approach to treatment

Prognostic value of genes

Ethical aspects and limitations

Chapter 6. Comparative analysis of allele frequencies in different populations

Ethnic differences (Europeans, Asians, African Americans)

Results of meta-analyses

Examples of population studies

Chapter 7. Future and Prospects of Genetic Research in NAFLD

Genomic Editing and CRISPR

Personalized Medicine

Next Generation Biomarkers

ISSN (E): 2938-3765

Genetic markers such as PNPLA3, TM6SF2, GCKR, MBOAT7 and HSD17B13 play an important role in the pathogenesis and diagnosis of NAFLD. Their use in clinical practice can improve diagnostic accuracy, predict disease progression and optimize treatment. The future of NAFLD diagnostics is associated with further development of molecular technologies and integration of genetic data into medical protocols.

ISSN (E): 2938-3765

References

Conclusion:

- Romeo S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008.
- Kozlitina J. et al. Exome-wide association study identifies TM6SF2 variant that confers susceptibility to NAFLD. Nat Genet. 2014.
- Speliotes E.K. et al. Association analyses identify variants associated with NAFLD. Nat Genet. 2011.
- Zokirov V. Z. COVID 19 o'tkazgan va o'tkazmagan jigarning noalkagol yog'xastaligi bilan og'rigan bemorlar klinikasi va labarator tahlillarining solishtirma tahlili //Scientific progress. - 2022. - T. 3. - №. 1. - C. 670-675.
- Zokirov V. Z. comparative analysis of the results of laboratory-biochemical analysis in middle-aged and elderly patients with non-alcoholic fatty liver disease after covid-19 //Art of Medicine. International Medical Scientific Journal. – 2022. – T. 2. – №. 1.
- Yuldasheva D. H., Muxamedova Z. R., Zokirov V. Z. chronic liver disease and covid-2019 (literature review and own data) //E-Conference Globe. – 2021. – C. 193-197.
- Yuldasheva D. H., Zokirov V. Z., Oltiboyev R. O. Modern approaches to the pathogenesis of non-alcoholic fatty liver disease //Euro-Asia Conferences. – 2021. – C. 384-389.
- Zokirov V. Z. Chronic liver disease and covid-2019 (literature review and own data) //research journal of trauma and disability studies. – 2021. – T. 1. – C. 1-6.
- 9. Юлдашева Д.Х., Зокиров В.З., Гуломова Ш.К. Неалкогольная жировая болезнь печени: современный взгляд на проблему // Многопрофильный рецензируемый журнал. Том 6. Выпуск 12. Декабрь 2020. - С. 286 - 292.
- 10. Зокиров В.З., Юлдашева Д.Х. Сравнительная оценка клинических симптомов неалкогольной жировой болезни печени у пациентов среднего и пожилого возраста с COVID-19 // Британский медицинский журнал. Англия. – 2022.–№1. –C.346-351.
- 11. Зокиров В.З. Сравнительный анализ результатов лабораторно-биохимических исследований у больных среднего и пожилого возраста с неалкогольной жировой болезнью печени после COVID-19 // Искусство медицины . Англия . – 2022. – Том-2 Выпуск-1.— С.134-137.
- 12. Luukkonen P.K. et al. MBOAT7 variant is associated with increased liver fat and inflammation. J Hepatol. 2016.
- 13. Abul-Husn N.S. et al. HSD17B13 variant protects from chronic liver disease. N Engl J Med. 2018.

