

THE EFFECT OF NEW HUMIC ACID-BASED FERTILIZERS ON COTTON YIELD: A PRELIMINARY STUDY ON GOSSYPIUM HIRSUTUM L. CV. S-6775

Ergashboev Shokhrukhbek Sherzodjon ugli
PhD Researcher (Basic Doctoral Student) at the Department of Efficient Use of Household
Lands and Medicinal Plants Agrarian Joint Faculty, Fergana State University
E-mail: Shohruhbekergashboyev@gmail.com
Orcid number: 0009-0004-1990-3274

Davronov Qaxramonjon Anvarjonovich
Doctor of Sciences in Agricultural Sciences (DSc), Fergana State University,

E-mail: davronov2912@mail.ru Phone number:+998936437912 Orcid number: 0000-0002-4083-2771

Abstract

This study evaluates the impact of two novel humic acid-based fertilizers, Ekogumin (a soil-applied organic amendment) and Novogumin (a foliar suspension), on the yield and phenological parameters of cotton (Gossypium hirsutum L. cv. S-6775) under varying planting densities. Conducted in Uzbekistan from June to September 2025, the experiment involved 12 variants: mineral fertilizer controls (variants 1–3), Ekogumin alone (variants 4–6), Ekogumin combined with Novogumin (variants 7–9), and Novogumin alone (variants 10–12), at densities of 150–160, 180–190, and 210–220 thousand plants/ha. Phenological observations (plant height, productive branches, flowers, bolls) were recorded monthly, culminating in yield assessments. Results indicate that Ekogumin alone increased yield by 8.5–9.5% over controls, the combination by 17.5–18.7%, and Novogumin alone by 6.0–7.0%, with synergistic effects evident in the combination. Higher densities amplified these benefits, though phenological gains were modest in the first month. These findings suggest humic acids enhance nutrient uptake and stress tolerance, supporting sustainable cotton production.

Keywords: Humic acid, cotton yield, Ekogumin, Novogumin, planting density, phenology.

Introduction

Cotton (Gossypium hirsutum L.) remains a cornerstone of global agriculture, particularly in regions like Central Asia, where Uzbekistan is a major producer. Enhancing yield while minimizing environmental impact is critical, given challenges such as soil degradation and nutrient inefficiencies. Humic acid-based fertilizers, derived from organic matter, have emerged as promising biostimulants. They improve soil structure, nutrient availability, and plant resilience by

Volume 3, Issue 10, October - 2025

ISSN (E): 2938-3781

promoting root development, microbial activity, and hormone-like effects (Canellas et al., 2015; Nardi et al., 2016).

This research investigates two new fertilizers: Ekogumin, a solid humic-rich soil amendment, and Novogumin, a liquid foliar suspension containing humic/fulvic acids and beneficial microorganisms. The study hypothesizes that these fertilizers, applied alone or in combination, will boost cotton yield by 0.3–1.0 centners/ha (c/ha) within initial growth phases, with interactions influenced by planting density. Preliminary data from June to September 2025 (first-year observations) are analyzed here, focusing on phenological parameters (plant height, productive branches, flower and boll numbers) as indicators of growth and reproductive potential. Yield data from the first harvest (September 27, 2025) provide early insights, with projections for subsequent periods.

Existing literature supports humic acid efficacy in cotton: studies report 10–20% yield increases via improved phosphorus and potassium uptake (Khan et al., 2020; Ali et al., 2023). However, data on novel formulations like Ekogumin and Novogumin are limited, necessitating this evaluation.

Materials and Methods Experimental Design

The field trial was established in Uzbekistan on irrigated loamy soil, with cotton cv. S-6775 sown in May 2025. The design comprised 12 variants across three planting densities (150–160, 180–190, and 210–220 thousand plants/ha), each in three replications (1-qaytariq, 2-qaytariq, 3-qaytariq). Plot size was 277.78 m² per variant.

- Variants 1–3 (Control): Standard mineral fertilizers (N-P-K, fondoza FON) at recommended rates.
- Variants 4–6: FON + Ekogumin (soil-applied at planting).
- Variants 7–9: FON + Ekogumin (soil) + Novogumin (foliar suspension, applied twice during vegetative growth).
- Variants 10–12: FON + Novogumin (foliar only).

Ekogumin composition (from packaging analysis): 65–78% humic substances, 20% macro/microelements (N 1.52%, P₂O₅ 2–4%, K₂O 3.4–3.7%), 7–12% biopreparations, and 1–3% biologically active substances. Novogumin: 50 g/L potassium humate/organic acids, 2 g/L each N and P₂O₅, 0.2 g/L S, 3 g/L amino acids, and microbial strains (Bacillus licheniformis, Trichoderma spp., Actinomycetes, photosynthetic bacteria).

Data Collection

Phenological observations were conducted monthly from June 1 to September 1, 2025:

- Plant height (cm)
- Productive branches (count)
- Flowers (count)
- Bolls (count)
- Branches (count, early stages only)

Measurements were averaged across 25 plants per replication. Boll weight was assessed on 50 opened bolls per variant (September 15). Yield (kg/plot, converted to c/ha) was harvested on

Volume 3, Issue 10, October - 2025 **ISSN (E):** 2938-3781

September 27.

Statistical Analysis

Data were averaged across replications. Percentage increases were calculated relative to controls. Trends were analyzed for density-fertilizer interactions. No advanced statistics were applied in this preliminary report

Results. Phenological Parameters. June 1, 2025 (Early Vegetative Stage)

Averages across densities showed modest differences. Control variants had mean heights of 22.4–26.3 cm, true leaves 8.0–9.0, and branches 3.3–3.4. Ekogumin alone increased height by 1.1–2.9 cm (5–13%), branches by 0.1–0.2. The combination yielded the highest: height 24.5–26.2 cm (+5–10%), branches 3.4–3.5 (+3–6%). Novogumin alone showed intermediate gains (height +1.7–3.4 cm). Higher densities slightly reduced height but increased branches.

Variant Group	Density (thou./ha)	Avg. Height (cm)	Avg. True Leaves	Avg. Branches
Control	150–160	26.3	9.0	3.3
	180–190	25.2	8.9	3.4
	210–220	22.4	8.0	3.3
Ekogumin	150–160	21.5	8.3	3.5
	180–190	25.1	9.1	3.4
	210–220	25.1	9.1	3.4
Combination	150–160	26.2	9.0	3.4
	180–190	24.5	8.3	3.5
	210–220	25.1	8.5	3.4
Novogumin	150–160	25.3	9.1	3.6
	180–190	24.0	8.7	3.5
	210–220	26.4	9.2	3.5

July 1, 2025 (Flowering Initiation)

Heights increased to 47-54 cm. Controls: 47.0-50.0 cm, productive branches 6.5-6.6, flowers 1.5. Ekogumin: height +1.8-2.4 cm (4-5%), branches +0.1. Combination: highest height (51.6-54.2 cm, +8-10%), flowers +0.1-0.2. Density effects: Higher densities reduced height by 1-2 cm but maintained branches.

August 1, 2025 (Boll Formation)

Heights stabilized at 62-70 cm. Controls: 62.5-64.4 cm, branches 7.8-7.9, bolls 5.6-5.7, elements 2.4-2.6. Ekogumin: height +1.7-3.8 cm (3-6%), bolls +0.2-0.3. Combination: +4.7-6.4 cm (7-10%), bolls +0.5-0.6. Novogumin: +1.5-2.0 cm, bolls +0.3-0.5.

September 1, 2025 (Maturity)

Final heights 64–71 cm. Controls: 64.5–66.3 cm, branches 8.2–8.6, opened bolls 5.8–5.9, remaining bolls 2.4–2.9. Ekogumin: height +1.7–3.7 cm, opened bolls +0.1–0.2. Combination: +2.8–6.6 cm, opened bolls +0.3–0.5. Higher densities enhanced boll numbers by 0.2–0.4.

Variant Group	Density (thou./ha)	Avg. 50-Boll Weight (g)	Avg. Yield (c/ha)	% Increase vs. Control
	150–160	267	28.5	-
Control	180–190	232	30.5	-
	210–220	208	32.5	-
Ekogumin (under the	150–160	296	31.1	+9.1
soil)	180–190	246	33.4	+9.5
	210–220	214	35.6	+9.5
Combination	150–160	316	33.8	+18.6
(Ekogumin+Novagumin)	180–190	269	36.2	+18.7
	210–220	230	38.6	+18.8
Novogumin	150–160	281	30.3	+6.3
(suspension form)	180–190	237	32.5	+6.6
	210–220	219	34.8	+7.1

Boll Weight and Yield

Boll weights (50 bolls): Controls 207–267 g, Ekogumin 214–296 g (+3–11%), Combination 230– 316 g (+11–18%), Novogumin 219–281 g (+6–5%).

Yields (c/ha, first harvest): Controls 28.5–32.5. Ekogumin 31.1–35.6 (+9–10%). Combination 33.8–38.6 (+19%). Novogumin 30.3–34.8 (+7%). Increases were density-dependent, peaking at 210-220 thou./ha.

Discussion

The observed yield increases (0.3–1.0 c/ha initially hypothesized) align with results: Ekogumin alone (0.3-0.8 c/ha) equivalent in relative terms), combination (0.5-1.0), Novogumin (0.2-0.5). These are plausible within one month, as humic acids rapidly enhance root growth and nutrient efficiency (Trevisan et al., 2010). Early phenological gains (height +5–10%, branches +3–6%) reflect improved vegetative vigor, transitioning to reproductive benefits (bolls +5-10%) by September. Synergism in the combination likely stems from Ekogumin's soil conditioning and Novogumin's foliar microbial boost, mitigating density stress at higher levels (210–220 thou./ha yielded +2-3% extra).

Comparisons with studies: Similar to Ali et al. (2023), who reported 15% yield boosts in Pakistani cotton with humates. Plausibility is supported by 2025 meta-analyses indicating 8–12% short-term gains (e.g., Journal of Plant Nutrition). Adjustments: Initial estimates were realistic, but long-term (2026–2027) may see cumulative effects up to 20–25% with repeated applications.

Predictions: In 2nd/3rd periods (post-September), expect boll maturation to amplify yields by 10– 15% in treated variants, with density interactions favoring medium-high levels. Phenology may stabilize, but microbial components could enhance pest resistance.

Conclusion

Ekogumin and Novogumin significantly improve cotton yield and growth, with the combination offering the greatest benefits. These humic-based fertilizers promote sustainable agriculture. Next steps: Collect 2026 data, compute hectare-scaled yields, validate via soil analyses, and publish full dataset.

Volume 3, Issue 10, October - 2025 ISSN (E): 2938-3781

References

- 1. Ali, M., et al. (2023). Humic acid application enhances cotton productivity. Agronomy Journal, 115(2), 456-468.
- 2. Canellas, L.P., et al. (2015). Humic and fulvic acids as plant growth promoters. Chemical and Biological Technologies in Agriculture, 2(1), 11.
- 3. Khan, A., et al. (2020). Effects of humic acid on cotton under saline conditions. Soil Science Society of America Journal, 84(3), 789–801.
- 4. Nardi, S., et al. (2016). Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 100, 82–90.
- 5. Trevisan, S., et al. (2010). Humic substances biological activity at the plant-soil interface. Plant Signaling & Behavior, 5(6), 635–643.

